Nonlinearity in nanomechanical cantilevers

被引:109
作者
Villanueva, L. G. [1 ,2 ,3 ,4 ,5 ]
Karabalin, R. B. [1 ,2 ,3 ,4 ]
Matheny, M. H. [1 ,2 ,3 ,4 ]
Chi, D. [1 ,2 ,3 ,4 ]
Sader, J. E. [1 ,2 ,3 ,4 ,6 ]
Roukes, M. L. [1 ,2 ,3 ,4 ]
机构
[1] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
[4] CALTECH, Dept Bioengn, Pasadena, CA 91125 USA
[5] Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[6] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 02期
基金
澳大利亚研究理事会;
关键词
ATOMIC-FORCE MICROSCOPE; BOUNDARY-CONDITIONS; RECTANGULAR-PLATES; BEAM; RESONATORS; VIBRATIONS; FREQUENCY; MASS;
D O I
10.1103/PhysRevB.87.024304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems development. In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultralinear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its predictions deviate strongly from our measurements for the nonlinearity of the fundamental flexural mode, which show a systematic dependence on aspect ratio (length/width) together with random scatter. This contrasts with the second mode, which is always found to be in good agreement with theory. These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation. DOI: 10.1103/PhysRevB.87.024304
引用
收藏
页数:8
相关论文
共 42 条
[1]  
[Anonymous], 1969, THEORY ELASTICITY
[2]   Diffusion-Induced Bistability of Driven Nanomechanical Resonators [J].
Atalaya, J. ;
Isacsson, A. ;
Dykman, M. I. .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[3]   Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators [J].
Bargatin, I. ;
Kozinsky, I. ;
Roukes, M. L. .
APPLIED PHYSICS LETTERS, 2007, 90 (09)
[4]   Noise processes in nanomechanical resonators [J].
Cleland, AN ;
Roukes, ML .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (05) :2758-2769
[5]  
CRESPODASILVA MRM, 1978, INT J NONLINEAR MECH, V13, P261
[7]   Mass and position determination of attached particles on cantilever based mass sensors [J].
Dohn, S. ;
Svendsen, W. ;
Boisen, A. ;
Hansen, O. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (10)
[8]   EXPERIMENTAL-THEORETICAL CORRELATION STUDY OF NONLINEAR BENDING AND TORSION DEFORMATIONS OF A CANTILEVER BEAM [J].
DOWELL, EH ;
TRAYBAR, J ;
HODGES, DH .
JOURNAL OF SOUND AND VIBRATION, 1977, 50 (04) :533-544
[9]  
Eichler A, 2011, NAT NANOTECHNOL, V6, P339, DOI [10.1038/NNANO.2011.71, 10.1038/nnano.2011.71]
[10]   Nanoelectromechanical systems [J].
Ekinci, KL ;
Roukes, ML .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (06)