Analysis of discretization errors in if estimation of polynomial phase signals

被引:0
|
作者
Rankine, L. [1 ]
Mesbah, M. [1 ]
Boashash, B. [1 ]
机构
[1] Univ Queensland, Perinatal Res Ctr, Royal Brisbane & Womens Hosp, Herston, Qld 4029, Australia
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The peak of the polynomial Wigner-Ville distribution (PWVD) is a method for providing an unbiased estimate of the instantaneous frequency (IF) for polynomial phase signals. The theoretical lower variance bound, assuming a continuous frequency variable, has been studied previously in [1]. However, due to the discretization of the PWVD required for computer implementation, there is also another theoretical lower variance bound which is a result of the discretization error. In this paper, we study the relationship between the discretization error bound and the theoretical lower variance bound and determine the minimum number of frequency samples required such that the theoretical lower variance bound can be attained.
引用
收藏
页码:105 / 108
页数:4
相关论文
共 50 条
  • [41] Estimation in the polynomial errors-in-variables model
    张三国
    陈希孺
    Science China Mathematics, 2002, (01) : 1 - 8
  • [42] Estimation in the polynomial errors-in-variables model
    张三国
    陈希孺
    ScienceinChina,SerA., 2002, Ser.A.2002 (01) : 1 - 8
  • [43] Influence of Discretization Errors on Set-based Parameter Estimation
    Rumschinski, Philipp
    Shona-Laila, Dina
    Borchers, Steffen
    Findeisen, Rolf
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 296 - 301
  • [44] ESTIMATION OF DISCRETIZATION ERRORS IN THE SOLUTION OF EQUATIONS IN BANACH-SPACES
    LIPPOLD, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (10): : 487 - 493
  • [45] Robust polynomial Wigner-Ville distribution for the analysis of polynomial phase signals in α-stable noise
    Djeddi, M
    Benidir, M
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 613 - 616
  • [46] Instantaneous Frequency Rate Estimation for High-Order Polynomial-Phase Signals
    Wang, Pu
    Li, Hongbin
    Djurovic, Igor
    Himed, Braham
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (09) : 782 - 785
  • [47] A new method for parameter estimation of high-order polynomial-phase signals
    Cao, Runqing
    Li, Ming
    Zuo, Lei
    Wang, Zeyu
    Lu, Yunlong
    SIGNAL PROCESSING, 2018, 142 : 212 - 222
  • [48] Parameter estimation of 2-d random amplitude polynomial-phase signals
    Francos, JM
    Friedlander, B
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (07) : 1795 - 1810
  • [49] Least squares estimation of polynomial phase signals via stochastic tree-search
    Huang, DW
    Sando, S
    Wen, L
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1569 - 1572
  • [50] MISSPECIFIED CRB ON PARAMETER ESTIMATION FOR A COUPLED MIXTURE OF POLYNOMIAL PHASE AND SINUSOIDAL FM SIGNALS
    Wang, Pu
    Koike-Akino, Toshiaki
    Pajovic, Milutin
    Orlik, Philip V.
    Tsujita, Wataru
    Gini, Fulvio
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5302 - 5306