Fabrication and Characterization of (Ba,La)SnO3 Semiconducting Epitaxial Films on (111) and (001) SrTiO3 Substrates

被引:2
作者
Miura, Kohei [1 ]
Kiriya, Daisuke [1 ]
Yoshimura, Takeshi [1 ]
Ashida, Atsushi [1 ]
Fujimura, Norifumi [1 ]
机构
[1] Osaka Prefecture Univ, Naka Ku, 1-1 Gakuen Cho, Sakai, Osaka 5998531, Japan
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2019年 / 216卷 / 05期
关键词
BaSnO3; Hall effect; orientation dependence; transparent oxides; OPTICAL-PROPERTIES; BASNO3; FILMS; THIN-FILMS; TRANSPARENT; PEROVSKITE; OXIDE; CONDUCTIVITY; PRINCIPLE;
D O I
10.1002/pssa.201700800
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, BaSnO3 has attracted great attention as a promising transparent oxide semiconductor with a large bandgap (3.3 eV) and high mobility (320 cm(2) V-1 s(-1)), and many reports have discussed the origin of its high mobility. Specifically, its effective mass m* has been investigated with both calculations and experiments. First-principles calculations have suggested that m* is small near the Gamma point and that this m* assists the high mobility. Therefore, it is quite important to study the anisotropy in the mobility of this material. However, except for (001) BaSnO3, there are almost no reports on the electrical transport properties of the films with other orientations. In this paper, the authors fabricate (111) and (001) (Ba,La)SnO3 films by using pulsed laser deposition to evaluate the structural differences including the epitaxial strain and the orientation distribution generated from the differences in the growth mode that is originated in the ionic arrangement of each surface. The effects of the structural differences for the conductivities of (001) and (111) films and how do the authors achieve the epitaxial films with high mobility are discussed.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Growth of Epitaxial Anatase Nano Islands on SrTiO3(001) by Dip Coating [J].
Oropeza, Freddy E. ;
Zhang, Kelvin H. L. ;
Regoutz, Anna ;
Lazarov, Vlado K. ;
Wermeille, Didier ;
Poll, Christopher G. ;
Egdell, Russell G. .
CRYSTAL GROWTH & DESIGN, 2013, 13 (04) :1438-1444
[42]   Magneto-Dielectric Properties of Epitaxial Ba(Fe0.5Sn0.5)O3-δ Thin Films on (001) SrTiO3 Substrates by Pulsed Laser Deposition [J].
Shinoda, Ryoichi ;
Iwase, Akihiro ;
Matsui, Toshiyuki .
MATERIALS TRANSACTIONS, 2014, 55 (04) :637-639
[43]   Fabrication and characterization of epitaxial SrTiO3/Nb-doped SrTiO3 superlattices by double ECR ion beam sputter deposition [J].
Panomsuwan, Gasidit ;
Takai, Osamu ;
Saito, Nagahiro .
VACUUM, 2013, 89 :35-39
[44]   Antiferromagnetic Order in Epitaxial FeSe Films on SrTiO3 [J].
Zhou, Y. ;
Miao, L. ;
Wang, P. ;
Zhu, F. F. ;
Jiang, W. X. ;
Jiang, S. W. ;
Zhang, Y. ;
Lei, B. ;
Chen, X. H. ;
Ding, H. F. ;
Zheng, Hao ;
Zhang, W. T. ;
Jia, Jin-feng ;
Qian, Dong ;
Wu, D. .
PHYSICAL REVIEW LETTERS, 2018, 120 (09)
[45]   Growth of epitaxial Pt thin films on (001) SrTiO3 by rf magnetron sputtering. [J].
Kahsay, A. ;
Polo, M. C. ;
Ferrater, C. ;
Ventura, J. ;
Rebled, J. M. ;
Varela, M. .
APPLIED SURFACE SCIENCE, 2014, 306 :23-26
[46]   Measurement of thermal conductance of La0.7Sr0.3MnO3 thin films deposited on SrTiO3 and MgO substrates [J].
Aryan, A. ;
Guillet, B. ;
Routoure, J. M. ;
Fur, C. ;
Langlois, P. ;
Mechin, L. .
APPLIED SURFACE SCIENCE, 2015, 326 :204-210
[47]   Octahedral coupling in (111)- and (001)-oriented La2/3Sr1/3MnO3/SrTiO3 heterostructures [J].
Moreau, Magnus ;
Selbach, Sverre M. ;
Tybell, Thomas .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (18)
[48]   RF magnetron sputter deposition and electrical properties of La and Y doped SrTiO3 epitaxial films [J].
Guo, Chen-Yuan ;
Qi, Xiaoding .
MATERIALS & DESIGN, 2019, 179
[49]   Perpendicular magnetic anisotropy of Mn4N films on MgO(001) and SrTiO3(001) substrates [J].
Yasutomi, Yoko ;
Ito, Keita ;
Sanai, Tatsunori ;
Toko, Kaoru ;
Suemasu, Takashi .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
[50]   Ta-doped epitaxial β-Ga2O3 films deposited on SrTiO3(100) substrates by MOCVD [J].
Wang, Di ;
Ma, Xiaochen ;
Xiao, Hongdi ;
Le, Yong ;
Ma, Jin .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 128