NONCONVEXITY OF THE OPTIMAL EXERCISE BOUNDARY FOR AN AMERICAN PUT OPTION ON A DIVIDEND-PAYING ASSET

被引:9
作者
Chen, Xinfu [1 ]
Cheng, Huibin [1 ]
Chadam, John [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
American option; put option; free boundary; convexity; integro-differential equation; near-expiry estimate; CRITICAL PRICE; APPROXIMATIONS; CONVEXITY; VALUES; STOCK;
D O I
10.1111/j.1467-9965.2011.00500.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We prove that when the dividend rate of the underlying asset following a geometric Brownian motion is slightly larger than the risk-free interest rate, the optimal exercise boundary of the American put option is not convex.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 31 条
[1]  
Aitsahlia F., 2001, Journal of Computational Finance, V4, P85
[2]  
[Anonymous], 2016, Options, Futures, and Other Derivatives
[3]  
BARLES G, 1995, MATH FINANC, V5, P77
[4]   EFFICIENT ANALYTIC APPROXIMATION OF AMERICAN OPTION VALUES [J].
BARONEADESI, G ;
WHALEY, RE .
JOURNAL OF FINANCE, 1987, 42 (02) :301-320
[5]   APPROXIMATIONS FOR THE VALUES OF AMERICAN OPTIONS [J].
BARONEADESI, G ;
ELLIOTT, RJ .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1991, 9 (02) :115-131
[6]   ANALYSIS OF THE OPTIMAL EXERCISE BOUNDARY OF AMERICAN OPTIONS FOR JUMP DIFFUSIONS [J].
Bayraktar, Erhan ;
Xing, Hao .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (02) :825-860
[7]  
BENSOUSSAN A, 1984, ACTA APPL MATH, V2, P139
[8]  
Bensoussan A., 1982, Application of variational inequalities in stochastic control
[9]  
BROADIE M, 1996, REV FINAN STUD, V9, P1121
[10]   The American put option and its critical stock price [J].
Bunch, DS ;
Johnson, H .
JOURNAL OF FINANCE, 2000, 55 (05) :2333-2356