A Jacobi elliptic function method for nonlinear arrays of vortices

被引:16
作者
Bhrawy, A. H. [2 ,3 ]
Tharwat, M. M. [2 ,3 ]
Yildirim, A. [1 ]
Abdelkawy, M. A. [3 ]
机构
[1] Ege Univ, Fac Sci, Dept Math, TR-35040 Bornova, Turkey
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf 62511, Egypt
关键词
Nonlinear arrays of vortices; Jacobi elliptic function method; Jacobi doubly periodic wave solution; Sinh-Poisson equation; Liouville equation; Sine-Poisson equation; EQUATIONS; SEPARATION; COLLISIONS;
D O I
10.1007/s12648-012-0173-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Arrays of vortices are considered for two-dimensional inviscid flows when the functional relationship between the stream function and the vorticity is hyperbolic sine, exponential, sine, and power functions. The Jacobi elliptic function method with symbolic computation is extended to these nonlinear equations for constructing their doubly periodic wave solutions. The different Jacobi function expansions may lead to new Jacobi doubly periodic wave solutions, triangular periodic solutions and soliton solutions. In addition, as an illustrative sample, the properties for the Jacobi doubly periodic wave solutions of the nonlinear equations are shown with some figures.
引用
收藏
页码:1107 / 1113
页数:7
相关论文
共 45 条
[1]   Generation of new classes of exactly solvable potential from the trigonometric Rosen-Morse potential [J].
Ahmed, S. A. S. ;
Buragohain, L. .
INDIAN JOURNAL OF PHYSICS, 2010, 84 (06) :741-744
[2]  
Akhiezer N. I., 1990, ELEMENTS THEORY ELLI
[3]  
[Anonymous], 1992, VORTEX DYNAMICS, DOI DOI 10.1017/CBO9780511624063
[4]   Complex hyperbolic-function method and its applications to nonlinear equations [J].
Bai, Cheng-Lin ;
Zhao, Hong .
PHYSICS LETTERS A, 2006, 355 (01) :32-38
[5]   New Solutions for (1+1)-Dimensional and (2+1)-Dimensional Kaup-Kupershmidt Equations [J].
Bhrawy, A. H. ;
Biswas, Anjan ;
Javidi, M. ;
Ma, Wen Xiu ;
Pinar, Zehra ;
Yildirim, Ahmet .
RESULTS IN MATHEMATICS, 2013, 63 (1-2) :675-686
[6]   Exact solutions for Ostrovsky equation [J].
Biswas, A. ;
Krishnan, E. V. .
INDIAN JOURNAL OF PHYSICS, 2011, 85 (10) :1513-1521
[7]  
Bondarenko N F, 1978, B IZV ACAD SCI USSR, V14, P207
[8]   Approximate analytic solutions of spin dependent coupled Altarelli-Parisi equations using method of successive iteration [J].
Choudhury, D. K. ;
Choudhury, R. .
INDIAN JOURNAL OF PHYSICS, 2012, 86 (05) :377-382
[9]   An analysis of non-singlet structure function in next-to-next-to-leading order at small-x [J].
Choudhury, D. K. ;
Islam, Saiful .
INDIAN JOURNAL OF PHYSICS, 2011, 85 (02) :319-328
[10]   Another exact solution for two-dimensional, inviscid sinh Poisson vortex arrays [J].
Chow, KW ;
Tsang, SC ;
Mak, CC .
PHYSICS OF FLUIDS, 2003, 15 (08) :2437-2440