Uncertainty Quantification of Global Net Methane Emissions From Terrestrial Ecosystems Using a Mechanistically Based Biogeochemistry Model

被引:22
作者
Liu, Licheng [1 ]
Zhuang, Qianlai [1 ,2 ,3 ]
Oh, Youmi [1 ]
Shurpali, Narasinha J. [4 ]
Kim, Seungbum [5 ]
Poulter, Ben [6 ,7 ]
机构
[1] Purdue Univ, Dept Earth Atmospher Planetary Sci, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[3] Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA
[4] Univ Eastern Finland, Dept Environm Sci, Kuopio, Finland
[5] CALTECH, Jet Prop Lab, Pasadena, CA USA
[6] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA
[7] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA
关键词
wetland methane emission; biogeochemistry modeling; uncertainty analysis; global modeling; NATURAL WETLANDS; ATMOSPHERIC METHANE; MINNESOTA PEATLAND; GAS-EXCHANGE; CH4; FLUXES; CLIMATE; VEGETATION; PATTERNS; SOIL; N2O;
D O I
10.1029/2019JG005428
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Quantification of methane (CH4) emissions from wetlands and its sinks from uplands is still fraught with large uncertainties. Here, a methane biogeochemistry model was revised, parameterized, and verified for various wetland ecosystems across the globe. The model was then extrapolated to the global scale to quantify the uncertainty induced from four different types of uncertainty sources including parameterization, wetland type distribution, wetland area distribution, and meteorological input. We found that global wetland emissions are 212 +/- 62 and 212 +/- 32 Tg CH(4)year(-1)(1Tg = 10(12) g) due to uncertain parameters and wetland type distribution, respectively, during 2000-2012. Using two wetland distribution data sets and three sets of climate data, the model simulations indicated that the global wetland emissions range from 186 to 212 CH(4)year(-1)for the same period. The parameters were the most significant uncertainty source. After combining the global methane consumption in the range of -34 to -46 Tg CH(4)year(-1), we estimated that the global net land methane emissions are 149-176 Tg CH(4)year(-1)due to uncertain wetland distribution and meteorological input. Spatially, the northeast United States and Amazon were two hotspots of methane emission, while consumption hotspots were in the Eastern United States and eastern China. During 1950-2016, both wetland emissions and upland consumption increased during El Nino events and decreased during La Nina events. This study highlights the need for more in situ methane flux data, more accurate wetland type, and area distribution information to better constrain the model uncertainty.
引用
收藏
页数:19
相关论文
共 96 条
[11]  
BOON PI, 1995, FEMS MICROBIOL ECOL, V18, P175, DOI 10.1111/j.1574-6941.1995.tb00175.x
[12]   METHANE FLUX AND STABLE HYDROGEN AND CARBON ISOTOPE COMPOSITION OF SEDIMENTARY METHANE FROM THE FLORIDA EVERGLADES [J].
Burke, Roger, Jr. ;
Barber, Timothy ;
Sackett, William .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (04) :329-340
[13]   Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model [J].
Cao, MK ;
Marshall, S ;
Gregson, K .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D9) :14399-14414
[14]   MODELING METHANE EMISSIONS FROM RICE PADDIES [J].
CAO, MK ;
DENT, JB ;
HEAL, OW .
GLOBAL BIOGEOCHEMICAL CYCLES, 1995, 9 (02) :183-195
[15]   Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate [J].
Chen, Huai ;
Zhu, Qiu'an ;
Peng, Changhui ;
Wu, Ning ;
Wang, Yanfen ;
Fang, Xiuqin ;
Jiang, Hong ;
Xiang, Wenhua ;
Chang, Jie ;
Deng, Xiangwen ;
Yu, Guirui .
GLOBAL CHANGE BIOLOGY, 2013, 19 (01) :19-32
[16]   Atmospheric modeling of high- and low-frequency methane observations: Importance of interannually varying transport [J].
Chen, YH ;
Prinn, RG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) :1-27
[17]  
Ciais P, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P465
[18]   RELATING CHAMBER MEASUREMENTS TO EDDY-CORRELATION MEASUREMENTS OF METHANE FLUX [J].
CLEMENT, RJ ;
VERMA, SB ;
VERRY, ES .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D10) :21047-21056
[19]  
Cui B., 1997, scientia, V17, P93
[20]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597