Minimizing bending losses in two-dimensional discrete soliton networks

被引:41
作者
Christodoulides, DN [1 ]
Eugenieva, ED [1 ]
机构
[1] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA
关键词
D O I
10.1364/OL.26.001876
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that reflection losses suffered by discrete solitons along sharp bends in two-dimensional waveguide-array networks can be almost eliminated. Analysis indicates that this can be accomplished by appropriately engineering the corner site of the bend. Our analytical results are verified by numerical simulations. (C) 2001 Optical Society of America.
引用
收藏
页码:1876 / 1878
页数:3
相关论文
共 50 条
  • [41] PERCOLATION ON TWO-DIMENSIONAL ELASTIC NETWORKS WITH ROTATIONALLY INVARIANT BOND-BENDING FORCES
    FENG, S
    SEN, PN
    HALPERIN, BI
    LOBB, CJ
    PHYSICAL REVIEW B, 1984, 30 (09): : 5386 - 5389
  • [42] Two-Dimensional Discrete Sine Transform and Discrete Cosine Transform Based on Two-Dimensional Multimode Interference Couplers
    Zhou, Junhe
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (21) : 1613 - 1615
  • [43] Minimizing a Symmetric Quasiconvex Function on a Two-Dimensional Lattice
    Veselov S.I.
    Gribanov D.B.
    Zolotykh N.Y.
    Chirkov A.Y.
    Veselov, S.I. (sergey.veselov@itmm.unn.ru), 2018, Pleiades journals (12) : 587 - 594
  • [44] Computer experiment on soliton excitation in two-dimensional crystals
    Tanaka, H
    Ozawa, S
    Hiki, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1997, 36 (5B): : 2964 - 2965
  • [45] Stable two-dimensional soliton supported by a local nonlinearity
    Granot, E
    Malomed, BA
    PHYSICAL REVIEW B, 2000, 62 (03) : 2185 - 2187
  • [46] TWO-DIMENSIONAL MODEL NETWORKS
    REHAGE, H
    VEYSSIE, M
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1985, 89 (11): : 1166 - 1171
  • [47] Soliton nanoantennas in two-dimensional arrays of quantum dots
    Gligoric, G.
    Maluckov, A.
    Hadzievski, Lj
    Slepyan, G. Ya
    Malomed, B. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (22)
  • [48] On the shapes of two-dimensional soliton perturbations in simple lattices
    S. P. Popov
    Computational Mathematics and Mathematical Physics, 2009, 49 : 314 - 322
  • [49] Motion of curves on two-dimensional surfaces and soliton equations
    Gurses, M.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 241 (06):
  • [50] Two-dimensional dark soliton in the nonlinear Schrodinger equation
    Sakaguchi, Hidetsugu
    Higashiuchi, Tomoko
    PHYSICS LETTERS A, 2006, 359 (06) : 647 - 651