Detection of Social Network Spam Based on Improved Extreme Learning Machine

被引:18
|
作者
Zhang, Zhijie [1 ]
Hou, Rui [1 ]
Yang, Jin [2 ]
机构
[1] Lingnan Normal Univ, Sch Informat Engn, Zhanjiang 524048, Peoples R China
[2] Guangdong Pharmaceut Univ, Sch Med Informat & Engn, Guangzhou 510006, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Twitter; Feature extraction; Classification algorithms; Machine learning algorithms; Support vector machines; Radio frequency; Social network; spam detection; spam features; machine learning; I2FELM;
D O I
10.1109/ACCESS.2020.3002940
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid advancement of the online social network, social media like Twitter has been increasingly critical to real life and become the prime objective of spammers. Twitter spam detection refers to a complex task for the involvement of a range of characteristics, and spam and non-spam have caused unbalanced data distribution in Twitter. To solve the mentioned problems, Twitter spam characteristics are analyzed as the user attribute, content, activity and relationship in this study, and a novel spam detection algorithm is designed based on regularized extreme learning machine, called the Improved Incremental Fuzzy-kernel-regularized Extreme Learning Machine (I2FELM), which is used to detect the Twitter spam accurately. As revealed from the experience validation results, the proposed I2FELM can efficiently identify the balanced and unbalanced dataset. Moreover, with few characteristics taken, the I2FELM can more effectively detect spam, which proves the effectiveness of the algorithm.
引用
收藏
页码:112003 / 112014
页数:12
相关论文
共 50 条
  • [41] Research on network intrusion detection security based on improved extreme learning algorithms and neural network algorithms
    Dai, Zhenjun
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2020, 12 (01) : 56 - 66
  • [42] UNIK: Unsupervised Social Network Spam Detection
    Tan, Enhua
    Guo, Lei
    Chen, Songqing
    Zhang, Xiaodong
    Zhao, Yihong
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 479 - 488
  • [43] Extreme Learning Machine based Traffic Sign Detection
    Huang, Zhiyong
    Yu, Yuanlong
    Ye, Shaozhen
    Liu, Huaping
    PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,
  • [44] Industrial diamond detection method based on improved coyote optimization algorithm and extreme learning machine
    Yang J.
    Lan X.
    Zhao Z.
    Yang Y.
    Wang B.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (02): : 449 - 459
  • [45] Fault Detection of Wastewater Treatment Plants Based on an Improved Kernel Extreme Learning Machine Method
    Zhou, Meng
    Zhang, Yinyue
    Wang, Jing
    Xue, Tonglai
    Dong, Zhe
    Zhai, Weifeng
    WATER, 2023, 15 (11)
  • [46] Internal model control based on improved extreme learning machine
    Huang, Yanwei
    ICIC Express Letters, Part B: Applications, 2013, 4 (01): : 31 - 37
  • [47] Evolutionary extreme learning machine based on an improved MOPSO algorithm
    Qinghua Ling
    Kaimin Tan
    Yuyan Wang
    Zexu Li
    Wenkai Liu
    Neural Computing and Applications, 2025, 37 (12) : 7733 - 7750
  • [48] An Improved Extreme Learning Machine Based on Particle Swarm Optimization
    Han, Fei
    Yao, Hai-Fen
    Ling, Qing-Hua
    BIO-INSPIRED COMPUTING AND APPLICATIONS, 2012, 6840 : 699 - +
  • [49] A Performance Evaluation of Machine Learning-Based Streaming Spam Tweets Detection
    Chen, Chao
    Zhang, Jun
    Xie, Yi
    Xiang, Yang
    Zhou, Wanlei
    Hassan, Mohammad Mehedi
    AlElaiwi, Abdulhameed
    Alrubaian, Majed
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2015, 2 (03) : 65 - 76
  • [50] Machine Learning-Based Opinion Spam Detection: A Systematic Literature Review
    Qazi, Atika
    Hasan, Najmul
    Mao, Rui
    Elhag Mohamed Abo, Mohamed
    Kumar Dey, Samrat
    Hardaker, Glenn
    IEEE ACCESS, 2024, 12 : 143485 - 143499