Non-commutative differentials and differential or difference Galois theory

被引:49
作者
André, Y [1 ]
机构
[1] Inst Math, F-75013 Paris, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2001年 / 34卷 / 05期
关键词
D O I
10.1016/S0012-9593(01)01074-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how the Galois-Picard-Vessiot theory of differential equations and difference equations. and the theory of holonomy groups in differential geometry, are different aspects of a unique Galois theory. The latter is based upon the construction and study of the tensor product of non commutative connections over a commutative base (semi-classical situation), without any curvature assumption. This theory provides for instance an algebraic frame for the study of the confluence arising when the increment of a difference equation tends to 0. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:685 / 739
页数:55
相关论文
共 49 条
[1]  
ANDRE Y, 1987, LECT NOTES MATH, V1296, P28
[2]  
ANDRE Y, 1989, IHESM8949
[3]  
Andre Y., 1996, Publ. Math. Inst. Hautes Etudes Sci., V83, P5, DOI 10.1007/BF02698643
[4]   Q-ANALOG OF DE RHAM COHOMOLOGY ASSOCIATED WITH JACKSON INTEGRALS .1. [J].
AOMOTO, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1990, 66 (07) :161-164
[5]  
Berthelot P., 1978, MATH NOTES, V21
[6]  
BERTRAND D, 1992, ASTERISQUE, P183
[7]  
BEUKERS F, 1992, NUMBER THEORY PHYSIC
[8]  
BIALYNICKIBIRULA, 1962, AM J MATH, V84, P89
[9]  
BOURBAKI N, 1981, ALGEBRE, pCH3
[10]  
BOURBAKI N, 1985, ALGEBRE COMMUTATIVE, pCH1