Formation of the skyrmionic polaron by Rashba and Dresselhaus spin-orbit coupling

被引:0
作者
Sahu, Pratik [1 ,2 ]
Nanda, B. R. K. [2 ]
Satpathy, S. [1 ,2 ]
机构
[1] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[2] Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, India
关键词
FERROMAGNETISM; CARRIERS; LATTICE; STATE;
D O I
10.1103/PhysRevB.106.224403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Skyrmions in reduced dimensions such as thin layers and interfaces are of both fundamental and technological importance. In these systems, itinerant electrons are often present together with the Rashba and Dresselhaus spin-orbit coupling (SOC). Here, we show that an itinerant electron in the presence of these interactions can nucleate the skyrmion state, even when the standard Dzyaloshinskii-Moriya interaction (DMI) is absent, and the electron can become self-trapped in the skyrmion core, forming the "skyrmionic polaron" (SkP). The formation of the SkP is investigated from a continuum model of the electron, exchange coupled to the lattice spins, by solving the appropriate Euler-Lagrange equations. The skyrmion (antiskyrmion) texture is favored by the Rashba (Dresselhaus) SOC, with the binding energy increasing quadratically with the strength of the interaction. In contrast, if the skyrmion is already formed due to a nonzero DMI, the electron is delocalized and avoids the skyrmion core until the strength of the Rashba or Dresselhaus SOC exceeds a critical value. Below this critical value, the electron is not bound to the skyrmion core, the polaron does not form, and the electron has little effect on the skyrmion state. Our work envisions the possibility of manipulating the skyrmion state in device applications by altering the strength of the Rashba or Dresselhaus interactions, e.g., by an external electric field.
引用
收藏
页数:13
相关论文
共 61 条
  • [1] Evidence of a topological Hall effect in Eu1-xSmxTiO3
    Ahadi, Kaveh
    Galletti, Luca
    Stemmer, Susanne
    [J]. APPLIED PHYSICS LETTERS, 2017, 111 (17)
  • [2] The 2020 skyrmionics roadmap
    Back, C.
    Cros, V
    Ebert, H.
    Everschor-Sitte, K.
    Fert, A.
    Garst, M.
    Ma, Tianping
    Mankovsky, S.
    Monchesky, T. L.
    Mostovoy, M.
    Nagaosa, N.
    Parkin, S. S. P.
    Pfleiderer, C.
    Reyren, N.
    Rosch, A.
    Taguchi, Y.
    Tokura, Y.
    von Bergmann, K.
    Zang, Jiadong
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (36)
  • [3] Enhanced Stability of Skyrmions in Two-Dimensional Chiral Magnets with Rashba Spin-Orbit Coupling
    Banerjee, Sumilan
    Rowland, James
    Erten, Onur
    Randeria, Mohit
    [J]. PHYSICAL REVIEW X, 2014, 4 (03):
  • [4] Bhowal S., 2020, PHYS REV B, V8, P02
  • [5] BOGDANOV AN, 1989, FIZ TVERD TELA+, V31, P99
  • [6] BOGDANOV AN, 1989, ZH EKSP TEOR FIZ+, V95, P178
  • [7] Magnetic Skyrmionic Polarons
    Brey, Luis
    [J]. NANO LETTERS, 2017, 17 (12) : 7358 - 7363
  • [8] OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS
    BYCHKOV, YA
    RASHBA, EI
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33): : 6039 - 6045
  • [9] BYCHKOV YA, 1984, JETP LETT+, V39, P78
  • [10] Multiple helimagnetic phases and topological Hall effect in epitaxial thin films of pristine and Co-doped SrFeO3
    Chakraverty, S.
    Matsuda, T.
    Wadati, H.
    Okamoto, J.
    Yamasaki, Y.
    Nakao, H.
    Murakami, Y.
    Ishiwata, S.
    Kawasaki, M.
    Taguchi, Y.
    Tokura, Y.
    Hwang, H. Y.
    [J]. PHYSICAL REVIEW B, 2013, 88 (22)