A RIEMANNIAN NEWTON ALGORITHM FOR NONLINEAR EIGENVALUE PROBLEMS

被引:45
作者
Zhao, Zhi [1 ]
Bai, Zheng-Jian [2 ]
Jin, Xiao-Qing [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear eigenvalue problem; Riemannian Newton algorithm; Stiefel manifold; Grassmann manifold; TRUST-REGION METHODS; TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; HARTREE-FOCK; OPTIMIZATION; MINIMIZATION; FUNCTIONALS; MANIFOLDS; GEOMETRY;
D O I
10.1137/140967994
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give the formulation of a Riemannian Newton algorithm for solving a class of nonlinear eigenvalue problems by minimizing a total energy function subject to the orthogonality constraint. Under some mild assumptions, we establish the global and quadratic convergence of the proposed method. Moreover, the positive definiteness condition of the Riemannian Hessian of the total energy function at a solution is derived. Some numerical tests are reported to illustrate the efficiency of the proposed method for solving large-scale problems.
引用
收藏
页码:752 / 774
页数:23
相关论文
共 46 条
[1]   PROJECTION-LIKE RETRACTIONS ON MATRIX MANIFOLDS [J].
Absil, P. -A. ;
Malick, Jerome .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (01) :135-158
[2]   Trust-region methods on Riemannian manifolds [J].
Absil, P-A. ;
Baker, C. G. ;
Gallivan, K. A. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (03) :303-330
[3]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[4]   Newton's method on Riemannian manifolds and a geometric model for the human spine [J].
Adler, RL ;
Dedieu, JP ;
Margulies, JY ;
Martens, M ;
Shub, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) :359-390
[5]  
[Anonymous], 1999, Nonlinear Programming
[6]  
[Anonymous], 1986, Dynamical systems and partial differential equations
[7]  
[Anonymous], 1999, Numerical Optimization.
[8]   ABINITIO MOLECULAR-DYNAMICS - ANALYTICALLY CONTINUED ENERGY FUNCTIONALS AND INSIGHTS INTO ITERATIVE SOLUTIONS [J].
ARIAS, TA ;
PAYNE, MC ;
JOANNOPOULOS, JD .
PHYSICAL REVIEW LETTERS, 1992, 69 (07) :1077-1080
[9]   Nonnegative inverse eigenvalue problems with partial eigendata [J].
Bai, Zheng-Jian ;
Serra-Capizzano, Stefano ;
Zhao, Zhi .
NUMERISCHE MATHEMATIK, 2012, 120 (03) :387-431
[10]   NEW APPROACH FOR SOLVING THE DENSITY-FUNCTIONAL SELF-CONSISTENT-FIELD PROBLEM [J].
BENDT, P ;
ZUNGER, A .
PHYSICAL REVIEW B, 1982, 26 (06) :3114-3137