Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay

被引:17
作者
Caraballo, Tomas [1 ]
Cortes, J-C [2 ]
Navarro-Quiles, A. [3 ,4 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, C Camino Vera S-N, E-46022 Valencia, Spain
[3] Univ Deusto, DeustoTech, Bilbao 48007, Basque Country, Spain
[4] Univ Deusto, Fac Ingn, Avda Univ 24, Bilbao 48007, Basque Country, Spain
基金
欧洲研究理事会;
关键词
Random linear differential equation with delay; Probability density function; Random variable transformation technique; PROBABILISTIC SOLUTION; STABILITY; EPIDEMIC;
D O I
10.1016/j.amc.2019.03.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We randomize the following class of linear differential equations with delay, x(tau)' (t) = ax(tau) (t) bx(tau) (t -tau), t> 0, and initial condition, x(tau )(t) = g(t), -tau <= t <= 0, by assuming that coefficients a and b are random variables and the initial condition g(t) is a stochastic process. We consider two cases, depending on the functional form of the stochastic process g(t), and then we solve, from a probabilistic point of view, both random initial value problems by determining explicit expressions to the first probability density function, f(x, t; tau), of the corresponding solution stochastic processes. Afterwards, we establish sufficient conditions on the involved random input parameters in order to guarantee that f(x, t; tau) con- verges, as tau -> 0(+), to the first probability density function, say f(x, t), of the corresponding associated random linear problem without delay (tau = 0). The paper concludes with several numerical experiments illustrating our theoretical findings. (C) 2019 Published by Elsevier Inc.
引用
收藏
页码:198 / 218
页数:21
相关论文
共 24 条
  • [1] [Anonymous], [No title captured]
  • [2] A full probabilistic solution of the random linear fractional differential equation via the random variable transformation technique
    Burgos, C.
    Calatayud, J.
    Cortes, J. -C.
    Navarro-Quiles, A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9037 - 9047
  • [3] Casab?n MC., 2014, ABSTR APPL ANAL, V2016, DOI 10.1155/2016/6372108
  • [4] A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique
    Casaban, M. -C.
    Cortes, J. -C.
    Navarro-Quiles, A.
    Romero, J. -V.
    Rosello, M. -D.
    Villanueva, R. -J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 32 : 199 - 210
  • [5] Probabilistic solution of random homogeneous linear second-order difference equations
    Casaban, M. -C.
    Cortes, J. -C
    Romero, J. -V.
    Rosello, M. -D.
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 34 : 27 - 32
  • [6] Determining the First Probability Density Function of Linear Random Initial Value Problems by the Random Variable Transformation (RVT) Technique: A Comprehensive Study
    Casaban, M. -C.
    Cortes, J. -C.
    Romero, J. -V.
    Rosello, M. -D.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density
    Dorini, F. A.
    Cecconello, M. S.
    Dorini, L. B.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 33 : 160 - 173
  • [8] Driver RD, 1977, APPLMATH SCI
  • [9] Using FEM-RVT technique for solving a randomly excited ordinary differential equation with a random operator
    El-Tawil, M.
    El-Tahan, W.
    Hussein, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 856 - 867
  • [10] Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique
    Hussein, A.
    Selim, M. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) : 7193 - 7203