Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator

被引:41
作者
Montes-Rodriguez, Alfonso
Sanchez-Alvarez, Juan
Zemanek, Jaroslav
机构
[1] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
D O I
10.1112/S002461150501539X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:761 / 788
页数:28
相关论文
共 27 条
[1]  
ALLAN G. R., 1997, BANACH CTR PUBL, V38, P9
[2]  
[Anonymous], QUESTIONES MATH
[3]  
[Anonymous], 2020, DENT, DOI DOI 10.2341/19-026-T
[4]   RATIONAL APPROXIMATIONS OF SEMIGROUPS [J].
BRENNER, P ;
THOMEE, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (04) :683-694
[5]  
Brenner P., 1975, LECT NOTES MATH, V434
[6]   MEAN-BOUNDED OPERATORS AND MEAN ERGODIC-THEOREMS [J].
EMILION, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 61 (01) :1-14
[7]  
Halmos, 2012, HILBERT SPACE PROBLE, V19
[8]  
HALMOS PR, 1978, BOUNDED INTEGRAL IPE
[9]   HIGH-ACCURACY STABLE DIFFERENCE SCHEMES FOR WELL-POSED INITIAL-VALUE PROBLEMS [J].
HERSH, R ;
KATO, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (04) :670-682
[10]   REMARKS ON ERGODIC THEOREMS [J].
HILLE, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 57 (MAR) :246-269