In this work, we study the orbital stability of steady states and the existence of self-similar blow-up solutions to the so-called Vlasov-Manev system. This system is a kinetic model which has a similar Vlasov structure to the classical Vlasov-Poisson system but is coupled to a potential in -1/r - 1/r(2) (Manev potential) instead of the usual gravitational potential in -1/r, and in particular the potential field does not satisfy a Poisson equation but a fractional Laplacian equation. We first prove the orbital stability of the ground state-type solutions which are constructed as minimizers of the Hamiltonian, following the classical strategy: compactness of the minimizing sequences and the rigidity of the flow. However, in driving this analysis, there are two mathematical obstacles: the first one is related to the possible blow-up of solutions to the Vlasov-Manev system, which we overcome by imposing a subcritical condition on the constraints of the variational problem. The second difficulty (and the most important) is related to the nature of the Euler-Lagrange equations (fractional Laplacian equations) to which classical results for the Poisson equation do not extend. We overcome this difficulty by proving the uniqueness of the minimizer under equimeasurability constraints, using only the regularity of the potential and not the fractional Laplacian Euler-Lagrange equations itself. In the second part of this work, we prove the existence of exact self-similar blow-up solutions to the Vlasov-Manev equation, with initial data arbitrarily close to ground states. This construction is based on a suitable variational problem with equimeasurability constraint.
机构:
Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, SpainUniv Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, Spain
Gabriel Iagar, Razvan
Sanchez, Ariel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, SpainUniv Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, Spain
机构:
Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, SpainUniv Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, Spain
Gabriel Iagar, Razvan
Isabel Munoz, Ana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, SpainUniv Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, Spain
Isabel Munoz, Ana
Sanchez, Ariel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, SpainUniv Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid 28933, Spain
机构:
Calif Polytech State Univ San Luis Obispo, Math Dept, San Luis Obispo, CA 93407 USA
San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USAUniv Oxford, Math Inst, AWB,ROQ,Woodstock Rd, Oxford OX2 6GG, Oxon, England
Charalampidis, E. G.
Kevrekidis, I. G.
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USAUniv Oxford, Math Inst, AWB,ROQ,Woodstock Rd, Oxford OX2 6GG, Oxon, England
Kevrekidis, I. G.
Kevrekidis, P. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Math & Stat, Amherst, MA USAUniv Oxford, Math Inst, AWB,ROQ,Woodstock Rd, Oxford OX2 6GG, Oxon, England