Receptor-Mediated Delivery of Magnetic Nanoparticles across the Blood-Brain Barrier
被引:252
作者:
Qiao, Ruirui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R ChinaSichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
Qiao, Ruirui
[2
]
Jia, Qiaojuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R ChinaSichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
Jia, Qiaojuan
[2
]
Huewel, Sabine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Munster, Inst Biochem, D-48149 Munster, GermanySichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
Huewel, Sabine
[3
]
Xia, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R ChinaSichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
Xia, Rui
[1
]
Liu, Ting
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R ChinaSichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
Liu, Ting
[1
]
Gao, Fabao
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R ChinaSichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
Gao, Fabao
[1
]
Galla, Hans-Joachim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Munster, Inst Biochem, D-48149 Munster, GermanySichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
Galla, Hans-Joachim
[3
]
Gao, Mingyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R ChinaSichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
Gao, Mingyuan
[2
]
机构:
[1] Sichuan Univ, W China Hosp, Dept Radiol, Mol Imaging Lab, Chengdu 610041, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
A brain delivery probe was prepared by covalently conjugating lactoferrin (Lf) to a poly(ethylene glycol) (PEG)-coated Fe3O4 nanoparticle in order to facilitate the transport of the nanoparticles across the blood-brain barrier (BBB) by receptor-mediated transcytosis via the Lf receptor present on cerebral endothelial cells. The efficacy of the Fe3O4-Lf conjugate to cross the BBB was evaluated in vitro using a cell culture model for the blood-brain barrier as well as in vivo in SD rats. For an in vitro experiment, a well-established porcine BBB model was used based on the primary culture of cerebral capillary endothelial cells grown on filter supports, thus allowing one to follow the transfer of nanoparticles from the apical (blood) to the basolateral (brain) side. For in vivo experiments, SD rats were used as animal model to detect the passage of the nanoparticles through the BBB by MRI techniques. The results of both in vitro and in vivo experiments revealed that the Fe3O4-Lf probe exhibited an enhanced ability to cross the BBB in comparison to the PEG-coated Fe3O4 nanoparticles and further suggested that the Lf-receptor-mediated transcytosis was an effective measure for delivering the nanoparticles across the BBB.