An Inverse Problem for One-dimensional Diffusion Equation in Optical Tomography

被引:0
|
作者
Addam, Mohamed [1 ]
机构
[1] Univ Mohammed Premier, Dept Math & Comp Sci, ENSAH, Oujda, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2019年 / 37卷 / 03期
关键词
Diffusion transport problem; Fourier transform; Nonlinear inverse problem; Newton method; Tikhonov regularization; Spline basis functions; Optical tomography; SCATTERING; TRANSPORT;
D O I
10.5269/bspm.v37i3.34223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the one-dimensional inverse problem for the diffusion equation based optical tomography. The objective of the present work is a mathematical and numerical analysis concerning one-dimensional inverse problem. In the first stage, the forward diffusion equation with boundary conditions is solved using an intermediate elliptic equation. We give the existence and the uniqueness results of the solution. An approximation of the photon density in frequency-domain is proposed using a Splines Galerkin method. In the second stage, we give theoretical results such as the stability and lipschitz-continuity of the forward solution and the Frechet differentiability of the Dirichlet-to-Neumann nonlinear map with respect to the optical parameters. The Frechet derivative is used to linearize the considered inverse problem. The Newton method based on the regularization technique will allow us to compute the approximate solutions of the inverse problem. Several test examples are used to verify high accuracy, effectiveness and good resolution properties for smooth and discontinuous optical property solutions.
引用
收藏
页码:159 / 194
页数:36
相关论文
共 50 条
  • [21] Numerical approximation of the one-dimensional inverse Cauchy–Stefan problem using heat polynomials methods
    Samat A. Kassabek
    Durvudkhan Suragan
    Computational and Applied Mathematics, 2022, 41
  • [22] Anomalous Spin Diffusion in One-Dimensional Antiferromagnets
    De Nardis, Jacopo
    Medenjak, Marko
    Karrasch, Christoph
    Ilievski, Enej
    PHYSICAL REVIEW LETTERS, 2019, 123 (18)
  • [23] Charge diffusion in the one-dimensional Hubbard model
    Steinigeweg, R.
    Jin, F.
    De Raedt, H.
    Michielsen, K.
    Gemmer, J.
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [24] On the numerical solution of the one-dimensional Schrodinger equation
    Fernandez, Francisco M.
    EUROPEAN JOURNAL OF PHYSICS, 2016, 37 (03)
  • [25] One dimensional inverse problem using diffusion approximation and its Hopf-Cole transformation
    Khan, TR
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL X, PROCEEDINGS: SIGNALS PROCESSING AND OPTICAL SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2003, : 300 - 303
  • [26] An inverse problem for Helmholtz equation
    Tadi, M.
    Nandakumaran, A. K.
    Sritharan, S. S.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 19 (06) : 839 - 854
  • [27] Bilayer one-dimensional Convection-Diffusion-Reaction-Source problem: Analytical and numerical solution
    Umbricht, Guillermo Federico
    Rubio, Diana
    Tarzia, Domingo Alberto
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 208
  • [28] Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem using heat polynomials methods
    Kassabek, Samat A.
    Suragan, Durvudkhan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)
  • [29] An inverse random source problem in a stochastic fractional diffusion equation
    Niu, Pingping
    Helin, Tapio
    Zhang, Zhidong
    INVERSE PROBLEMS, 2020, 36 (04)
  • [30] Characterization of anomalous diffusion in one-dimensional quantum walks
    Hegde, Abhaya S.
    Chandrashekar, C. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (23)