Diffusion transport problem;
Fourier transform;
Nonlinear inverse problem;
Newton method;
Tikhonov regularization;
Spline basis functions;
Optical tomography;
SCATTERING;
TRANSPORT;
D O I:
10.5269/bspm.v37i3.34223
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we study the one-dimensional inverse problem for the diffusion equation based optical tomography. The objective of the present work is a mathematical and numerical analysis concerning one-dimensional inverse problem. In the first stage, the forward diffusion equation with boundary conditions is solved using an intermediate elliptic equation. We give the existence and the uniqueness results of the solution. An approximation of the photon density in frequency-domain is proposed using a Splines Galerkin method. In the second stage, we give theoretical results such as the stability and lipschitz-continuity of the forward solution and the Frechet differentiability of the Dirichlet-to-Neumann nonlinear map with respect to the optical parameters. The Frechet derivative is used to linearize the considered inverse problem. The Newton method based on the regularization technique will allow us to compute the approximate solutions of the inverse problem. Several test examples are used to verify high accuracy, effectiveness and good resolution properties for smooth and discontinuous optical property solutions.
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Sci Comp Key Lab Shanghai Univ, Shanghai Univ E Inst, Shanghai Normal Univ, Div Computat Sci, Shanghai 200041, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Cheng, Jin
Nakagawa, Junichi
论文数: 0引用数: 0
h-index: 0
机构:
Nippon Steel Corp Ltd, Math Sci & Technol Res Grp, Adv Technol Res Labs, Tech Dev Bur, Chiba 2938511, JapanFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Nakagawa, Junichi
Yamamoto, Masahiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, JapanFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Yamamoto, Masahiro
Yamazaki, Tomohiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, JapanFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
机构:
Jazan Univ, Fac Sci, Dept Math, Jazan, Saudi ArabiaJazan Univ, Fac Sci, Dept Math, Jazan, Saudi Arabia
Huntul, M. J.
Abbas, Muhammad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sargodha, Dept Math, Sargodha 40100, PakistanJazan Univ, Fac Sci, Dept Math, Jazan, Saudi Arabia
Abbas, Muhammad
Baleanu, Dumitru
论文数: 0引用数: 0
h-index: 0
机构:
Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey
Inst Space Sci, POB MG-23, R-769000 Magurele, Romania
China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, TaiwanJazan Univ, Fac Sci, Dept Math, Jazan, Saudi Arabia