Convergence of Krylov methods for sums of two operators

被引:7
作者
Nevanlinna, O [1 ]
机构
[1] HELSINKI UNIV TECHNOL,INST MATH,FIN-02150 ESPOO,FINLAND
来源
BIT | 1996年 / 36卷 / 04期
关键词
Krylov methods; GMRES; trace class;
D O I
10.1007/BF01733791
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We discuss the convergence of Krylov subspace methods for equations x = Tx + f where T is a sum of two operators, T = B+K, where B is bounded and K is nuclear. Bounds are given for inf \\Q(k)(B+K)\\ and for inf \\p(k)(B+K)\\, where the infimum is over all polynomials of degree k, such that Q(k) is monic and p(k) is normalized: p(k)(1) = 1.
引用
收藏
页码:775 / 785
页数:11
相关论文
共 6 条
[1]   QMR - A QUASI-MINIMAL RESIDUAL METHOD FOR NON-HERMITIAN LINEAR-SYSTEMS [J].
FREUND, RW ;
NACHTIGAL, NM .
NUMERISCHE MATHEMATIK, 1991, 60 (03) :315-339
[2]  
FREUND RW, 1962, ACTA NUEMRICA, P57
[3]  
Gohberg I., 1990, Classes of Linear Operators, V1
[4]  
MALINEN J, 1995, THESIS HELSINKI U TE
[5]  
Nevanlinna Olavi, 1993, CONVERGENCE ITERATIO
[6]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058