Nonlocal Navier-Stokes problem with a small parameter

被引:4
作者
Shakhmurov, Veli B. [1 ,2 ]
机构
[1] Okan Univ, Dept Mech Engn, Istanbul, Turkey
[2] Azerbaijan Natl Akad Sci, Inst Math & Mech, Baku, Azerbaijan
关键词
Stokes operators; Navier-Stokes equations; differential equations with small parameters; semigroups of operators; boundary value problems; differential-operator equations; maximal L-p regularity; BOUNDARY-VALUE-PROBLEMS; EQUATIONS; REGULARITY; OPERATOR; LIMITS;
D O I
10.1186/1687-2770-2013-107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Initial nonlocal boundary value problems for a Navier-Stokes equation with a small parameter is considered. The uniform maximal regularity properties of the corresponding stationary Stokes operator, well-posedness of a nonstationary Stokes problem and the existence, uniqueness and uniformly L-p estimates for the solution of the Navier-Stokes problem are established.
引用
收藏
页数:19
相关论文
共 43 条
[31]   Nonlinear abstract boundary-value problems in vector-valued function spaces and applications [J].
Shakhmurov, Veli B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) :745-762
[32]   Nonlinear abstract boundary value problems modelling atmospheric dispersion of pollutants [J].
Shakhmurov, Veli B. ;
Shahmurova, Aida .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :932-951
[33]   Separable anisotropic differential operators and applications [J].
Shakhmurov, Veli B. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1182-1201
[34]  
Sobolevskii PE ., 1964, SOV MATH DOKL, V5, P720
[35]  
Solonnokov VA., 1977, J. Sov. Math., V8, P467
[36]   Boundary layers associated with incompressible Navier-Stokes equations: The noncharacteristic boundary case [J].
Temam, R ;
Wang, X .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) :647-686
[37]  
TEMAN R, 1984, NAVIER STOKES EQUATI
[38]  
Triebel H., 1978, INTERPOLATION THEORY
[39]   Operator-valued Fourier multiplier theorems and maximal Lp-regularity [J].
Weis, L .
MATHEMATISCHE ANNALEN, 2001, 319 (04) :735-758
[40]   THE NAVIER-STOKES INITIAL VALUE-PROBLEM IN LP [J].
WEISSLER, FB .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1980, 74 (03) :219-230