Nonlocal Navier-Stokes problem with a small parameter

被引:4
作者
Shakhmurov, Veli B. [1 ,2 ]
机构
[1] Okan Univ, Dept Mech Engn, Istanbul, Turkey
[2] Azerbaijan Natl Akad Sci, Inst Math & Mech, Baku, Azerbaijan
关键词
Stokes operators; Navier-Stokes equations; differential equations with small parameters; semigroups of operators; boundary value problems; differential-operator equations; maximal L-p regularity; BOUNDARY-VALUE-PROBLEMS; EQUATIONS; REGULARITY; OPERATOR; LIMITS;
D O I
10.1186/1687-2770-2013-107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Initial nonlocal boundary value problems for a Navier-Stokes equation with a small parameter is considered. The uniform maximal regularity properties of the corresponding stationary Stokes operator, well-posedness of a nonstationary Stokes problem and the existence, uniqueness and uniformly L-p estimates for the solution of the Navier-Stokes problem are established.
引用
收藏
页数:19
相关论文
共 43 条
[1]  
Amann H., 1995, Linear and Quasi-linear Equations, 1
[3]  
[Anonymous], 2003, MEM AM MATH SOC, DOI [DOI 10.1090/MEMO/0788, 10.1090/memo/0788]
[4]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[5]  
Cannone M, 1997, REV MAT IBEROAM, V13, P515
[6]   Vorticity and regularity for flows under the Navier boundary condition [J].
da Veiga, H. Beirao .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) :907-918
[7]  
DESCH W, 2001, J EVOL EQU, V1, P1
[8]  
Dore G, 2000, SEMIGROUP FORUM, V60, P93, DOI 10.1007/s002330010005
[9]   BOUNDARY-VALUE PROBLEMS FOR NAVIER-STOKES EQUATIONS [J].
FABES, EB ;
LEWIS, JE ;
RIVIERE, NM .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :626-668
[10]  
Fefferman C., 1993, INDIANA U MATH J, V42, P775