Nanostructures for Reduced Lattice Thermal Conductivity - Case Studies for Nanopores and Grain Boundaries

被引:0
作者
Hao, Qing [1 ]
Xu, Dongchao [1 ]
Xiao, Yue [1 ]
Xiao, Bo [1 ]
Zhao, Hongbo [1 ]
机构
[1] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
来源
THERMOELECTRIC AND THERMAL INTERFACE MATERIALS 3 | 2017年 / 80卷 / 05期
基金
美国国家科学基金会;
关键词
SILICON; PERFORMANCE;
D O I
10.1149/08005.0067ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Solid-state thermoelectric devices have the ability to directly convert heat into electricity for power generation. A good TE material should possess a high electrical conductivity, a high Seebeck coefficient, and a low thermal conductivity. This requirement is hard to be satisfied within the same material. To address this issue, the nanostructuring approach has been widely used to reduce the lattice part of the thermal conductivity (k(L)) but still maintain the bulk electrical properties. High TE performance has thus been achieved in various nanostructured materials, such as nanoporous thin films and different nanostructured bulk materials. To better understand the observed k(L) reduction by nanostructures, two major types of nanostructured materials are studies here, including nanoporous thin films and nanograined bulk materials. In the latter case, a super-flexible thin film was hot pressed onto a wafer to represent a grain boundary.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 42 条
[1]   Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Su, Mehmet ;
Leseman, Zayd C. ;
Reinke, Charles M. ;
El-Kady, Ihab .
NATURE COMMUNICATIONS, 2015, 6
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[4]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[5]   THERMAL-CONDUCTIVITY OF ALPHA-SIH THIN-FILMS [J].
CAHILL, DG ;
KATIYAR, M ;
ABELSON, JR .
PHYSICAL REVIEW B, 1994, 50 (09) :6077-6081
[6]  
Chen G., 2005, PAPPAL SER MECH ENG
[7]   Minimum thermal conductivity in superlattices: A first-principles formalism [J].
Garg, Jivtesh ;
Chen, Gang .
PHYSICAL REVIEW B, 2013, 87 (14)
[8]  
Goldsmid H. J., 1964, Thermoelectric Refrigeration
[9]   Thermal Conductivity of Mechanically Joined Semiconducting/Metal Nanomembrane Superlattices [J].
Grimm, Daniel ;
Wilson, Richard B. ;
Teshome, Bezuayehu ;
Gorantla, Sandeep ;
Ruemmeli, Mark H. ;
Bublat, Thomas ;
Zallo, Eugenio ;
Li, Guodong ;
Cahill, David G. ;
Schmidt, Oliver G. .
NANO LETTERS, 2014, 14 (05) :2387-2393
[10]  
Hao Q., 2011, APPL M CARLO METHOD