Development of wind measurement systems for future space missions

被引:16
作者
Shepherd, Gordon G. [1 ]
机构
[1] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Winds; Atmosphere; Interferometer; Mass spectrometer; Lidar; SPATIAL HETERODYNE SPECTROSCOPY; MICHELSON INTERFEROMETER; IMAGING INTERFEROMETER; STRATOSPHERIC WIND; ATMOSPHERE; DASH;
D O I
10.1016/j.actaastro.2015.05.015
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
An essential physical quantity for the understanding of planetary systems is dynamics; that is, atmospheric winds. Relatively few wind measurement missions have been conducted in past decades, but there is a current renewed interest. This manuscript is concerned with optical remote sensing methods, but in-situ approaches, such as mass spectrometers on satellites are also briefly included. The optical methods are based on Doppler shifts of atmospheric emission or absorption features. This survey considers three classes of optical spectroscopic systems, the Fabry-Perot Spectrometer (FPS), the Doppler Michelson Interferometer (DMI) and the Spatial Heterodyne Spectrometer (SHS). The FPS is a quadratic system, in which the change of wavelength corresponding to a change of off-axis angle inside the instrument goes as the square of the angle. The DMI is a fourth-order system, allowing higher values of solid angle of acceptance and the same is true for the SHS. Approaches additional to the optical methods, mass spectrometers, sub-millimetre wave radiometry, gas cell absorption technology and lidar are briefly described. Examples of results from past missions are presented and possible directions for future missions described. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 50 条
[41]   FULAS: Design and test results of a novel laser platform for future LIDAR missions [J].
Luttmann, Joerg ;
Klein, Juergen ;
Plum, Heinz-Dieter ;
Hoffmann, Hans-Dieter ;
Hahn, Sven ;
Bode, Markus .
SOLID STATE LASERS XXVI: TECHNOLOGY AND DEVICES, 2017, 10082
[42]   Measurement of wave slope asymmetry from a Multistatic Space Lidar Constellation: Theory and preliminary analysis of Wind direction Retrievals [J].
Josset, Damien ;
Hu, Yongxiang ;
Hovis, Floyd ;
Weimer, Carl ;
Hou, Weilin ;
Pelon, Jacques ;
Pascal, Nicolas ;
Michael, Chris .
2019 IEEE/OES TWELFTH CURRENT, WAVES AND TURBULENCE MEASUREMENT (CWTM), 2019,
[43]   Near infrared cavity ring-down spectroscopy for isotopic analyses of CH4 on future Martian surface missions [J].
Chen, Y. ;
Mahaffy, P. ;
Holmes, V. ;
Burris, J. ;
Morey, P. ;
Lehmann, K. K. ;
Lollar, B. Sherwood ;
Lacrampe-Couloume, G. ;
Onstott, T. C. .
PLANETARY AND SPACE SCIENCE, 2015, 105 :117-122
[44]   Characteristics of Wind Profiles for Airborne Wind Energy Systems [J].
He, Hao ;
Niu, Xiaojing ;
Li, Xiaoyu ;
Cai, Yanfeng ;
Li, Leming ;
Ye, Xinwei ;
Wang, Junhao .
ENERGIES, 2025, 18 (09)
[45]   An Overview of Spaceborne Atmospheric Wind Field Measurement with Passive Optical Remote Sensing [J].
Feng Yutao ;
Fu Di ;
Zhao Zengliang ;
Zong Weiguo ;
Yu Tao ;
Sheng Zheng ;
Zhu Yajun .
ACTA OPTICA SINICA, 2023, 43 (06)
[46]   THE CIRAS TECHNOLOGY DEMONSTRATION AND FUTURE APPLICATIONS FOR IR SOUNDING FROM SPACE [J].
Pagano, Thomas S. .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :5415-5417
[47]   Envisioning a sustainable future for space launches: a review of current research and policy [J].
Brown, Tyler F. M. ;
Bannister, Michele T. ;
Revell, Laura E. .
JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2024, 54 (03) :273-289
[48]   Colorado Ultraviolet Transit Experiment: a mission development history and future possibilities from the National Aeronautics and Space Administration's first ultraviolet astronomy CubeSat [J].
Patton, Tom ;
France, Kevin ;
Egan, Arika .
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2024, 10 (03)
[49]   Pluto's interaction with its space environment: Solar wind, energetic particles, and dust [J].
Bagenal, F. ;
Horanyi, M. ;
McComas, D. J. ;
McNutt, R. L., Jr. ;
Elliott, H. A. ;
Hill, M. E. ;
Brown, L. E. ;
Delamere, P. A. ;
Kollmann, P. ;
Krimigis, S. M. ;
Kusterer, M. ;
Lisse, C. M. ;
Mitchell, D. G. ;
Piquette, M. ;
Poppe, A. R. ;
Strobel, D. F. ;
Szalay, J. R. ;
Valek, P. ;
Vandegriff, J. ;
Weidner, S. ;
Zirnstein, E. J. ;
Stern, S. A. ;
Ennico, K. ;
Olkin, C. B. ;
Weaver, H. A. ;
Young, L. A. .
SCIENCE, 2016, 351 (6279)
[50]   Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus [J].
Sayanagi, K. M. ;
Dillman, R. A. ;
Atkinson, D. H. ;
Li, J. ;
Saikia, S. ;
Simon, A. A. ;
Spilker, T. R. ;
Wong, M. H. ;
Edwards, W. C. ;
Hope, D. ;
Arora, A. ;
Bowen, S. C. ;
Bowes, A. ;
Brady, J. S. ;
Clark, T. O. ;
Fairbairn, R. E. ;
Goggin, D. G. ;
Grondin, T. A. ;
Horan, S. J. ;
Infeld, S. I. ;
Leckey, J. P. ;
Longuski, J. M. ;
Marvel, T. E. ;
McCabe, R. M. ;
Parikh, A. M. ;
Peterson, D. J. ;
Primeaux, S. J. ;
Scammell, A. D. ;
Somervill, K. M. ;
Taylor, L. W., III ;
Thames, C. ;
Tosoc, H. P. ;
Tran, L. D. .
SPACE SCIENCE REVIEWS, 2020, 216 (04)