Optimal process design of biogas upgrading membrane systems: Polymeric vs high performance inorganic membrane materials

被引:41
作者
Bozorg, M. [1 ,2 ,3 ]
Ramirez-Santos, Alvaro A. [1 ]
Addis, B. [2 ]
Piccialli, V. [3 ]
Castel, C. [1 ]
Favre, E. [1 ]
机构
[1] Univ Lorraine, CNRS, LRGP, F-54000 Nancy, France
[2] Univ Lorraine, CNRS, LORIA, F-54000 Nancy, France
[3] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Viale Politecn 1, I-00133 Rome, Italy
关键词
Membrane; Process; Synthesis; Biogas; Purification; Cost; CO2; CAPTURE; GAS; PURIFICATION;
D O I
10.1016/j.ces.2020.115769
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane separation is a key technology for biogas purification. Multistaged processes based on either cellulose acetate (CA) or polyimide (PI) materials are classically used for this application. In this study, a systematic process synthesis optimization is performed in order to identify the most cost effective solution for three different membrane materials (CA, PI and zeolite) and three different outlet pressure levels (5, 10 and 15 Bar). It is shown that a costly (i.e. 2000 EUR per square meter vs 50 for CA and PI) but high performance membrane material such a zeolite offers the best cost effective solution compared to commercially available polymeric membranes. Increasing the outlet pressure increases the purification cost. Two stages processes with recycling loops offer the best balance between purity, recovery, complexity and cost, whatever the outlet pressure level. The use of vacuum pumping is shown to improve the process economy, while expander and extra feed compression do not show an interest. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 30 条
[1]   Natural gas purification from acid gases using membranes: A review of the history, features, techno-commercial challenges, and process intensification of commercial membranes [J].
Alcheikhhamdon, Yousif ;
Hoorfar, Mina .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2017, 120 :105-113
[2]   Biogas upgrading and utilization: Current status and perspectives [J].
Angelidaki, Irini ;
Treu, Laura ;
Tsapekos, Panagiotis ;
Luo, Gang ;
Campanaro, Stefano ;
Wenzel, Henrik ;
Kougias, Panagiotis G. .
BIOTECHNOLOGY ADVANCES, 2018, 36 (02) :452-466
[3]   A Review of Biogas Utilisation, Purification and Upgrading Technologies [J].
Awe, Olumide Wesley ;
Zhao, Yaqian ;
Nzihou, Ange ;
Minh, Doan Pham ;
Lyczko, Nathalie .
WASTE AND BIOMASS VALORIZATION, 2017, 8 (02) :267-283
[4]  
Baker R.W., 2004, Membr. Technol. Appl., V2nd
[5]   Gas Separation Membrane Materials: A Perspective [J].
Baker, Richard W. ;
Low, Bee Ting .
MACROMOLECULES, 2014, 47 (20) :6999-7013
[6]   Future directions of membrane gas separation technology [J].
Baker, RW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) :1393-1411
[7]   Membrane-based technologies for biogas separations [J].
Basu, Subhankar ;
Khan, Asim L. ;
Cano-Odena, Angels ;
Liu, Chunqing ;
Vankelecom, Ivo F. J. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (02) :750-768
[8]  
Bauer F., 2013, Biogas upgrading - Review of commercial technologies
[9]   Polymeric membrane materials for nitrogen production from air: A process synthesis study [J].
Bozorg, M. ;
Addis, B. ;
Picciall, V ;
Ramirez-Santos, Alvaro A. ;
Castel, C. ;
Pinnau, I ;
Favre, E. .
CHEMICAL ENGINEERING SCIENCE, 2019, 207 :1196-1213
[10]   Membrane gas separation technologies for biogas upgrading [J].
Chen, Xiao Yuan ;
Hoang Vinh-Thang ;
Ramirez, Antonio Avalos ;
Rodrigue, Denis ;
Kaliaguine, Serge .
RSC ADVANCES, 2015, 5 (31) :24399-24448