Global existence and convergence rates of smooth solutions for the full compressible MHD equations

被引:71
作者
Pu, Xueke [1 ]
Guo, Boling [2 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2013年 / 64卷 / 03期
基金
中国国家自然科学基金;
关键词
Compressible magnetohydrodynamic equations; Global smooth solutions; Convergence rate; NAVIER-STOKES EQUATIONS; VANISHING SHEAR VISCOSITY; HEAT-CONDUCTIVE FLUIDS; INITIAL-VALUE-PROBLEM; MAGNETOHYDRODYNAMIC EQUATIONS; EXTERIOR DOMAIN; HALF-SPACE; MOTION; FLOWS; BEHAVIOR;
D O I
10.1007/s00033-012-0245-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the global smooth solutions and their decay for the full compressible magnetohydrodynamic equations in R (3). We prove the global existence of smooth solutions near the constant state in Sobolev norms by energy method and show the convergence rates of the L (p) -norm of these solutions to the constant state when the L (q) -norm of the perturbation is bounded.
引用
收藏
页码:519 / 538
页数:20
相关论文
共 31 条
[1]   Existence and continuous dependence of large solutions for the magnetohydrodynamic equations [J].
Chen, GQ ;
Wang, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (04) :608-632
[2]   Global solutions of nonlinear magnetohydrodynamics with large initial data [J].
Chen, GQ ;
Wang, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :344-376
[3]   Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations [J].
Chen, Qing ;
Tan, Zhong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4438-4451
[4]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[5]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[6]   The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars [J].
Ducomet, Bernard ;
Feireisl, Eduard .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (03) :595-629
[7]  
FAN J., 2007, REND SEMIN MAT U POL, V65, P35
[8]   Vanishing shear viscosity limit in the magnetohydrodynamic equations [J].
Fan, Jishan ;
Jiang, Song ;
Nakamura, Gen .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :691-708
[9]   Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry [J].
Frid, H ;
Shelukhin, V .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (05) :1144-1156
[10]   Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations [J].
Hu, Xianpeng ;
Wang, Dehua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (08) :2176-2198