Ascent and eruption of a lunar high-titanium magma as inferred from the petrology of the 74001/2 drill core

被引:51
作者
Weitz, CM
Rutherford, MJ
Head, JW
McKay, DS
机构
[1] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA
[2] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA
来源
METEORITICS & PLANETARY SCIENCE | 1999年 / 34卷 / 04期
关键词
D O I
10.1111/j.1945-5100.1999.tb01361.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An analysis of the orange grasses and crystallized beads from the 68 cm deep 74001/2 core has been conducted to understand the processes occurring during ascent and eruption of the Apollo 17 orange glass magma. Equilibrium between melt and metal blebs (Fe85Ni14Co1) within the core, along with Cr contents in olivine phenocrysts, suggest there was an oxidation of C and a reduction of the melt at an O fugacity of IW-1.3 and 1320 degrees C to form CO gas at 200 bars or similar to 4 lan depth. This was followed by development of more oxidized conditions during ascent. Also during ascent, there was formation of euhedral, homogeneous Fo(81) olivine crystals and spinel crystals with higher Al and Mg contents than the smaller spinels in the crystallized beads. Both the metal blebs and Al-rich spinels were trapped inside the Fo(81) olivine phenocrysts as they grew prior to eruption. The composition of the orange glasses are homogeneous throughout the core, except for a few distinct glasses at the top that appear to have been mixed in by micrometeorite reworking. A few glassy melt inclusions of orange glass composition trapped in the Fo(81) phenocrysts contain 600 +/- 100 ppm S and similar to 50 ppm CI compared to the 200 ppm S and 50 ppm Cl in the orange glass melt when quenched. These inclusions therefore document the addition of 400 ppm S to the GO-rich volcanic gas during the eruption. The size and distribution of different volcanic beads in the Apollo 17 deposit indicate a mode of eruption in which the orange glasses and partially crystallized beads formed further away from the volcanic vent where cooling rates were faster. Progressively larger and more numerous crystals in the black beads reflect slower cooling rates at higher optical densities in the volcanic plume. The development of a brown texture in the orange glasses at the bottom of the core, where the black beads dominate, is interpreted to result from devitrification by subsolidus heating either as the orange glasses fell back through the hot plume or after deposition on the surface. The change from domination by orange glasses to black beads in the core probably reflects a decrease in gas content over time, which consequently would increase the plume optical density and favor slower cooling rates.
引用
收藏
页码:527 / 540
页数:14
相关论文
共 47 条
[1]  
AKELLA J, 1976, P 7 LUN PLAN SCI C, P1179
[2]  
[Anonymous], 1978, P LUNAR PLANET SCI C
[3]  
[Anonymous], 1976, PROC LUNAR SCI C
[4]  
[Anonymous], P 4 C LUN SCI HOUST
[5]   FORMATION OF APOLLO-17 ORANGE AND BLACK GLASS-BEADS [J].
ARNDT, J ;
VONENGELHARDT, W .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B4) :E372-E376
[6]   FORMATION OF APOLLO-15 GREEN GLASS-BEADS [J].
ARNDT, J ;
VONENGELHARDT, W ;
GONZALEZCABEZA, I ;
MEIER, B .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 :C225-C232
[7]  
BLANCHARD DP, 1978, P LUNAR PLANET SCI C, P1969
[8]  
BOGARD DD, 1978, P LUN PLAN SCI C 9, P1981
[9]   Compressibility of molten high-Ti mare glass: Evidence for crystal-liquid density inversions in the lunar mantle [J].
Circone, S ;
Agee, CB .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1996, 60 (14) :2709-2720
[10]  
Crozaz G., 1978, Proceedings of the 9th lunar and planetary science conference, P2001