A Cohen-Macaulay algebra has only finitely many semidualizing modules

被引:8
作者
Chrstensen, Lars Winther [1 ]
Sather-Wagstaff, Sean [2 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[2] N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0305004108001552
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the result stated in the title, which answers the equicharacteristic case of a question of Vasconcelos.
引用
收藏
页码:601 / 603
页数:3
相关论文
共 9 条
[1]  
Cartan H., 1999, Homological algebra. Princeton Landmarks in Mathematics
[2]   Semi-dualizing complexes and their Auslander categories [J].
Christensen, LW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) :1839-1883
[3]   Reflexivity and ring homomorphisms of finite flat dimension [J].
Frankild, Anders ;
Sather-Wagstaff, Sean .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (02) :461-500
[4]   The set of semidualizing complexes is a nontrivial metric space [J].
Frankild, Anders ;
Sather-Wagstaff, Sean .
JOURNAL OF ALGEBRA, 2007, 308 (01) :124-143
[5]  
Grothendieck A., 1961, Publ. Math. Inst. Hautes Etudes Sci., V11, P167
[6]  
Happel D, 1995, MATH APPL, V343, P257
[7]   Semidualizing modules and the divisor class group [J].
Sather-Wagstaff, Sean .
ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (01) :255-285
[8]  
Vasconcelos W., 1974, DIVISOR THEORY MODUL
[9]  
Vasconcelos W.V., 1974, N HOLLAND MATH STUDI, V53