On the Stability of a Cubic Functional Equation

被引:14
作者
Najati, Abbas [1 ]
Park, Choonkil [2 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Sci, Dept Math, Ardebil, Iran
[2] Hanyang Univ, Dept Math, Seoul 133791, South Korea
关键词
Hyers-Ulam-Rassias stability; cubic functional equation;
D O I
10.1007/s10114-008-6560-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will find out the general solution and investigate the generalized Hyers Ulam-Rassias stability problem for the following cubic functional equation 2f(x + 2y) + f(2x - y) = 5f(x + y) + 5f(x - y) + 15f(y) in the spirit of Hyers, Ulam, Rassias and Gavruta.
引用
收藏
页码:1953 / 1964
页数:12
相关论文
共 29 条
[1]  
Aczel J., 1989, FUNCTIONAL EQUATIONS
[2]  
Amir D., 1986, Operator Theory Adv. Appl., V20
[3]  
[Anonymous], B KOREAN MATH SOC
[4]   Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces [J].
Baak, Choonkil .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) :1789-1796
[5]  
BAKER JA, 1980, P AM MATH SOC, V80, P411, DOI 10.2307/2043730
[6]  
Cholewa P. W., 1984, AEQUATIONES MATH, V27, P76, DOI DOI 10.1007/BF02192660
[7]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[8]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[9]  
Grabiec A, 1996, PUBL MATH-DEBRECEN, V48, P217
[10]  
Hyers D.H., 1998, Stability of Functional Equations in Several Variables