Methods for dealing with time-dependent confounding

被引:271
作者
Daniel, R. M. [1 ]
Cousens, S. N. [1 ]
De Stavola, B. L. [1 ]
Kenward, M. G. [1 ]
Sterne, J. A. C. [2 ]
机构
[1] Univ London London Sch Hyg & Trop Med, Ctr Stat Methodol, London WC1E 7HT, England
[2] Univ Bristol, Dept Social Med, Bristol, Avon, England
基金
英国医学研究理事会;
关键词
time-dependent confounding; g-computation formula; inverse probability weighting; g-estimation; marginal structural model; structural nested model; MARGINAL STRUCTURAL MODELS; DOUBLY ROBUST ESTIMATION; CORONARY-HEART-DISEASE; CAUSAL INFERENCE; G-COMPUTATION; RISK-FACTORS; MORTALITY; SELECTION; SURVIVAL;
D O I
10.1002/sim.5686
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Longitudinal studies, where data are repeatedly collected on subjects over a period, are common in medical research. When estimating the effect of a time-varying treatment or exposure on an outcome of interest measured at a later time, standard methods fail to give consistent estimators in the presence of time-varying confounders if those confounders are themselves affected by the treatment. Robins and colleagues have proposed several alternative methods that, provided certain assumptions hold, avoid the problems associated with standard approaches. They include the g-computation formula, inverse probability weighted estimation of marginal structural models and g-estimation of structural nested models. In this tutorial, we give a description of each of these methods, exploring the links and differences between them and the reasons for choosing one over the others in different settings. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1584 / 1618
页数:35
相关论文
共 47 条
[11]  
Greenland S, 1999, STAT SCI, V14, P29
[12]   Causal diagrams for epidemiologic research [J].
Greenland, S ;
Pearl, J ;
Robins, JM .
EPIDEMIOLOGY, 1999, 10 (01) :37-48
[13]   Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men [J].
Hernán, MA ;
Brumback, B ;
Robins, JM .
EPIDEMIOLOGY, 2000, 11 (05) :561-570
[14]   Comparison of dynamic treatment regimes via inverse probability weighting [J].
Hernán, MA ;
Lanoy, E ;
Costagliola, D ;
Robins, JM .
BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2006, 98 (03) :237-242
[15]   A structural approach to selection bias [J].
Hernán, MA ;
Hernández-Díaz, S ;
Robins, JM .
EPIDEMIOLOGY, 2004, 15 (05) :615-625
[16]   Population intervention models in causal inference [J].
Hubbard, Alan E. ;
Van der Laan, Mark J. .
BIOMETRIKA, 2008, 95 (01) :35-47
[17]   Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data [J].
Kang, Joseph D. Y. ;
Schafer, Joseph L. .
STATISTICAL SCIENCE, 2007, 22 (04) :523-539
[18]   Causal effects in longitudinal studies: Definition and maximum likelihood estimation [J].
Neugebauer, Romain ;
van der Laan, Mark J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) :1664-1675
[19]  
Pearl J., 2001, Health Services and Outcomes Research Methodology, V2, P189, DOI DOI 10.1023/A:1020315127304
[20]   Structural Nested Cumulative Failure Time Models to Estimate the Effects of Interventions [J].
Picciotto, Sally ;
Hernan, Miguel A. ;
Page, John H. ;
Young, Jessica G. ;
Robins, James M. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) :886-900