Drift-Aware Edge Intelligence for Remaining Useful Life Prediction in Industrial Internet of Things

被引:0
作者
Ong, Kevin Shen Hoong [1 ]
Niyato, Dusit [1 ]
Friedrichs, Thomas [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Robert Bosch SEA Pte Ltd, Singapore, Singapore
来源
2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022) | 2022年
基金
新加坡国家研究基金会;
关键词
Industrial internet of things; edge computing; incremental learning; predictive maintenance; remaining useful life; DEEP; SYSTEM;
D O I
10.1109/ITC-CSCC55581.2022.9895023
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Advances in the Industrial Internet of Things (IIoT) enable complex machine data analysis and information extraction to improve manufacturing throughput. However, existing approaches are fixated on improving prediction accuracy and overlook the implications of model drift on edge-based devices. For this reason, we present a real-time system for monitoring RUL model performance drift via incremental learning. Besides, edge devices are compute and memory bounded with diverse configurations. To address this problem, we propose to re-train the RUL prediction model on an edge server and conduct extensive experiments to determine the optimal quantity of batchsized data that exhibits the lowest error deviation compared to tabula rasa model training. Our findings demonstrate that incremental training yields an average training time savings of 60% for an open-source industrial dataset while incurring a mean difference of -1.1% and -4.9% for prognostics performance metrics root-mean-square-error and score, respectively.
引用
收藏
页码:198 / 201
页数:4
相关论文
共 17 条
  • [1] Ayodeji A., 2021, ISA T
  • [2] An Overview on Edge Computing Research
    Cao, Keyan
    Liu, Yefan
    Meng, Gongjie
    Sun, Qimeng
    [J]. IEEE ACCESS, 2020, 8 : 85714 - 85728
  • [3] Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components
    Deutsch, Jason
    He, David
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (01): : 11 - 20
  • [4] Deep Learning for Smart Industry: Efficient Manufacture Inspection System With Fog Computing
    Li, Liangzhi
    Ota, Kaoru
    Dong, Mianxiong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (10) : 4665 - 4673
  • [5] Remaining useful life estimation in prognostics using deep convolution neural networks
    Li, Xiang
    Ding, Qian
    Sun, Jian-Qiao
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2018, 172 : 1 - 11
  • [6] Empowering IoT Predictive Maintenance Solutions With AI: A Distributed System for Manufacturing Plant-Wide Monitoring
    Liu, Yuehua
    Yu, Wenjin
    Dillon, Tharam
    Rahayu, Wenny
    Li, Ming
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (02) : 1345 - 1354
  • [7] McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
  • [8] Ong K. S. H., 2021, P IEEE 7 WORLD FOR I, P598
  • [9] Ran Y., 2019, arXiv:1912.07383, VXX, P1, DOI DOI 10.48550/ARXIV.1912.07383
  • [10] Bearing remaining useful life prediction based on deep autoencoder and deep neural networks
    Ren, Lei
    Sun, Yaqiang
    Cui, Jin
    Zhang, Lin
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2018, 48 : 71 - 77