The total angular momentum algebra related to the S3 Dunkl Dirac equation

被引:6
作者
De Bie, Hendrik [1 ]
Oste, Roy [2 ]
Van der Jeugt, Joris [2 ]
机构
[1] Univ Ghent, Fac Engn & Architecture, Dept Math Anal, Krijgslaan 281-S8, B-9000 Ghent, Belgium
[2] Univ Ghent, Fac Sci, Dept Appl Math Comp Sci & Stat, Krijgslaan 281-S9, B-9000 Ghent, Belgium
关键词
Dirac equation; Dunkl operator; Total angular momentum; Symmetry algebra; OPERATORS;
D O I
10.1016/j.aop.2017.12.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the symmetry algebra generated by the total angular momentum operators, appearing as constants of motion of the S-3 Dunkl Dirac equation. The latter is a deformation of the Dirac equation by means of Dunkl operators, in our case associated to the root system A(2), with corresponding Weyl group S-3, the symmetric group on three elements. The explicit form of the symmetry algebra in this case is a one-parameter deformation of the classical total angular momentum algebra so(3), incorporating elements of S-3. This was obtained using recent results on the symmetry algebra for a class of Dirac operators, containing in particular the Dirac-Dunkl operator for arbitrary root system. For this symmetry algebra, we classify all finite-dimensional, irreducible representations and determine the conditions for the representations to be unitarizable. The class of unitary irreducible representations admits a natural realization acting on a representation space of eigenfunctions of the Dirac Hamiltonian. Using a Cauchy-Kowalevski extension theorem we obtain explicit expressions for these eigenfunctions in terms of Jacobi polynomials. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:192 / 218
页数:27
相关论文
共 23 条
  • [1] [Anonymous], 1966, GEN HYPERGEOMETRIC F
  • [2] [Anonymous], 2014, ORTHOGONAL POLYNOMIA
  • [3] Bailey W. N., 1964, CAMBRIDGE TRACTS MAT, V32
  • [4] DUNKL OPERATORS AND A FAMILY OF REALIZATIONS OF osp(1|2)
    De Bie, H.
    Orsted, B.
    Somberg, P.
    Soucek, V.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (07) : 3875 - 3902
  • [5] The Z2n Dirac-Dunkl operator and a higher rank Bannai-Ito algebra
    De Bie, Hendrik
    Genest, Vincent X.
    Vinet, Luc
    [J]. ADVANCES IN MATHEMATICS, 2016, 303 : 390 - 414
  • [6] A Dirac-Dunkl Equation on S 2 and the Bannai-Ito Algebra
    De Bie, Hendrik
    Genest, Vincent X.
    Vinet, Luc
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (02) : 447 - 464
  • [7] INTERTWINING-OPERATORS ASSOCIATED TO THE GROUP S-3
    DUNKL, CF
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) : 3347 - 3374
  • [9] SINGULAR POLYNOMIALS FOR FINITE REFLECTION GROUPS
    DUNKL, CF
    DEJEU, MF
    OPDAM, EM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 346 (01) : 237 - 256
  • [10] On Dunkl angular momenta algebra
    Feigin, Misha
    Hakobyan, Tigran
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11): : 1 - 23