Velocity-space structures of distribution function in toroidal ion temperature gradient turbulence

被引:169
|
作者
Watanabe, TH [1 ]
Sugama, H [1 ]
机构
[1] Grad Univ Adv Studies, Natl Inst Fus Sci, Gifu 5095292, Japan
关键词
D O I
10.1088/0029-5515/46/1/003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Velocity-space structures of ion distribution function associated with the ion temperature gradient (ITG) turbulence and the collisionless damping of the zonal flow are investigated by means of a newly developed toroidal gyrokinetic-Vlasov simulation code with high velocity-space resolution. The present simulation on the zonal flow and the geodesic acoustic mode (GAM) successfully reproduces the neoclassical polarization of trapped ions as well as ballistic mode structures produced by collisionless particle motions. During the collisionless damping of GAM, the finer-scale structures of the ion distribution function in the velocity-space continue to develop while preserving an invariant defined by a sum of an entropy variable and the potential energy. The simulation results of the toroidal ITG turbulent transport clearly show generation of the fine velocity-space structures of the distribution function and their collisional. dissipation. Detailed calculation of the entropy balance confirms the statistically steady state of turbulence, where the anomalous transport balances with the dissipation are given by the weak collisionality. The above results obtained by simulations with high velocity-space resolution are also understood in terms of generation, transfer and dissipation processes of the entropy variable in the phase-space.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 50 条
  • [31] Inversion methods for fast-ion velocity-space tomography in fusion plasmas
    Jacobsen, A. S.
    Stagner, L.
    Salewski, M.
    Geiger, B.
    Heidbrink, W. W.
    Korsholm, S. B.
    Leipold, F.
    Nielsen, S. K.
    Rasmussen, J.
    Stejner, M.
    Thomsen, H.
    Weiland, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (04)
  • [32] High-definition velocity-space tomography of fast-ion dynamics
    Salewski, M.
    Geiger, B.
    Jacobsen, A. S.
    Hansen, P. C.
    Heidbrink, W. W.
    Korsholm, S. B.
    Leipold, F.
    Madsen, J.
    Moseev, D.
    Nielsen, S. K.
    Nocente, M.
    Odstrcil, T.
    Rasmussen, J.
    Stagner, L.
    Stejner, M.
    Weiland, M.
    NUCLEAR FUSION, 2016, 56 (10)
  • [34] On velocity-space sensitivity of fast-ion D-alpha spectroscopy
    Salewski, M.
    Geiger, B.
    Moseev, D.
    Heidbrink, W. W.
    Jacobsen, A. S.
    Korsholm, S. B.
    Leipold, F.
    Madsen, J.
    Nielsen, S. K.
    Rasmussen, J.
    Stejner, M.
    Weiland, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (10)
  • [35] Ion temperature gradient modes in toroidal helical systems
    Kuroda, T
    Sugama, H
    Kanno, R
    Okamoto, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (08) : 2485 - 2492
  • [36] Conversion of poloidal flows into toroidal flows by phase space structures in trapped ion resonance driven turbulence
    Kosuga, Y.
    Itoh, S-I
    Diamond, P. H.
    Itoh, K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
  • [37] ION TEMPERATURE-GRADIENT MODES IN TOROIDAL GEOMETRY
    CHENG, CZ
    TSANG, KT
    BEASLEY, CO
    VANRIJ, W
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 866 - 866
  • [38] On finite β stabilization of the toroidal ion temperature gradient mode
    Hirose, A
    PHYSICS OF PLASMAS, 2000, 7 (02) : 433 - 436
  • [39] ION-TEMPERATURE-GRADIENT INSTABILITY IN TOROIDAL PLASMAS
    GUZDAR, PN
    CHEN, L
    TANG, WM
    RUTHERFORD, PH
    PHYSICS OF FLUIDS, 1983, 26 (03) : 673 - 677
  • [40] Short wavelength ion temperature gradient turbulence
    Chowdhury, J.
    Brunner, S.
    Ganesh, R.
    Lapillonne, X.
    Villard, L.
    Jenko, F.
    PHYSICS OF PLASMAS, 2012, 19 (10)