Mild solutions of non-Lipschitz stochastic integrodifferential evolution equations

被引:6
作者
Diop, Mamadou Abdoul [1 ]
Caraballo, Tomas [2 ]
Mane, Aziz [1 ]
机构
[1] Univ Gaston Berger St Louis, UFR SAT, Dept Math, BP234, St Louis, Senegal
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Apdo Correos 1160, E-41080 Seville, Spain
关键词
resolvent operators; C-0-semigroup; local non-Lipschitz condition; stochastic partial integrodifferential evolution equations; mild solutions; SUCCESSIVE-APPROXIMATIONS; RESOLVENT OPERATORS; INTEGRAL-EQUATIONS; EXISTENCE;
D O I
10.1002/mma.3879
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the existence and uniqueness of mild solutions for stochastic partial integrodifferential equations under local non-Lipschitz conditions on the coefficients. Our analysis makes use of the theory of resolvent operators as developed by R. Grimmer as well as a stopping time technique. Our results complement and improve several earlier related works. An example is provided to illustrate the theoretical results. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4527 / 4534
页数:8
相关论文
共 12 条
[1]   Successive approximations of infinite dimensional SDEs with jump [J].
Cao, GL ;
He, K ;
Zhang, XC .
STOCHASTICS AND DYNAMICS, 2005, 5 (04) :609-619
[2]  
Diop MA, 2012, INT J MATH MATH SCI
[3]   RESOLVENT OPERATORS FOR INTEGRAL-EQUATIONS IN A BANACH-SPACE [J].
GRIMMER, RC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 273 (01) :333-349
[4]   ANALYTIC RESOLVENT OPERATORS FOR INTEGRAL-EQUATIONS IN BANACH-SPACE [J].
GRIMMER, RC ;
PRITCHARD, AJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 50 (02) :234-259
[5]  
Liang J., 2008, DYNAM CONT DIS SER A, V15, P815
[6]  
Liu K., 2006, CH/C MON SUR PUR APP, V135
[7]  
Pardoux E., 1979, Stochastics, V3, P127, DOI 10.1080/17442507908833142
[8]   Second-order Neutral Stochastic Evolution Equations with Infinite Delay under Carath,odory Conditions [J].
Ren, Y. ;
Sun, D. D. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 147 (03) :569-582
[9]   SUCCESSIVE-APPROXIMATIONS TO SOLUTIONS OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
TANIGUCHI, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :152-169
[10]   The existence and uniqueness of energy solutions to local non-Lipschitz stochastic evolution equations [J].
Taniguchi, Takeshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (01) :245-253