Electrostatically Induced Quantum Point Contacts in Bilayer Graphene

被引:93
作者
Overweg, Hiske [1 ]
Eggimann, Hannah [1 ]
Chen, Xi [2 ]
Slizovskiy, Sergey [2 ]
Eich, Marius [1 ]
Pisoni, Riccardo [1 ]
Lee, Yongjin [1 ]
Rickhaus, Peter [1 ]
Watanabe, Kenji [3 ]
Taniguch, Takashi [3 ]
Fal'ko, Vladimir
Ihn, Thomas [1 ]
Ensslin, Klaus [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[3] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
bilayer graphene; quantum point contact; graphite gate; band gap; electrostatic confinement; displacement field; TRANSPORT; STATES;
D O I
10.1021/acs.nanolett.7b04666
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as R similar to 10 G Omega. This exceeds previously reported values of R = 10-100 k Omega.(1-3) We attribute this improvement to the use of a graphite back gate. We realize two split gate devices which define an electronic channel on the scale of the Fermi-wavelength. A channel gate covering the gap between the split gates varies the charge carrier density in the channel. We observe device-dependent conductance quantization of Delta G = 2e(2)/h and Delta G = 4e(2)/h. In quantizing magnetic fields normal to the sample plane, we recover the four-fold Landau level degeneracy of bilayer graphene. Unexpected mode crossings appear at the crossover between zero magnetic field and the quantum Hall regime.
引用
收藏
页码:553 / 559
页数:7
相关论文
共 31 条
[1]   Gate-defined quantum confinement in suspended bilayer graphene [J].
Allen, M. T. ;
Martin, J. ;
Yacoby, A. .
NATURE COMMUNICATIONS, 2012, 3
[2]  
BEENAKKER CWJ, 1991, SOLID STATE PHYS, V44, P1
[3]   Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate [J].
Bischoff, D. ;
Libisch, F. ;
Burgdoerfer, J. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2014, 90 (11)
[4]   The importance of edges in reactive ion etched graphene nanodevices [J].
Bischoff, Dominik ;
Simonet, Pauline ;
Varlet, Anastasia ;
Overweg, Hiske C. ;
Eich, Marius ;
Ihn, Thomas ;
Ensslin, Klaus .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (01) :68-74
[5]   QUANTIZED TRANSMISSION OF A SADDLE-POINT CONSTRICTION [J].
BUTTIKER, M .
PHYSICAL REVIEW B, 1990, 41 (11) :7906-7909
[6]   Low-density ferromagnetism in biased bilayer graphene [J].
Castro, Eduardo V. ;
Peres, N. M. R. ;
Stauber, T. ;
Silva, N. A. P. .
PHYSICAL REVIEW LETTERS, 2008, 100 (18)
[7]   Electron flow in split-gated bilayer graphene [J].
Droescher, Susanne ;
Barraud, Clement ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Ihn, Thomas ;
Ensslin, Klaus .
NEW JOURNAL OF PHYSICS, 2012, 14
[8]   Gate-Defined Confinement in Bilayer Graphene-Hexagonal Boron Nitride Hybrid Devices [J].
Goossens, Augustinus M. ;
Driessen, Stefanie C. M. ;
Baart, Tim A. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Vandersypen, Lieven M. K. .
NANO LETTERS, 2012, 12 (09) :4656-4660
[9]  
Hunt B. M., 2017, NAT COMMUN, V8, P1
[10]  
Kim M, 2016, NAT PHYS, V12, P1022, DOI [10.1038/NPHYS3804, 10.1038/nphys3804]