Van Allen Probes Observations of Chorus Wave Vector Orientations: Implications for the Chorus-to-Hiss Mechanism

被引:39
作者
Hartley, D. P. [1 ]
Kletzing, C. A. [1 ]
Chen, L. [2 ]
Horne, R. B. [3 ]
Santolik, O. [4 ,5 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[2] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA
[3] British Antarctic Survey, Cambridge, England
[4] Inst Atmospher Phys, Dept Space Phys, Prague, Czech Republic
[5] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
基金
英国自然环境研究理事会;
关键词
Van Allen Probes; EMFISIS; chorus waves; plasmaspheric hiss; plasmaspheric plumes; wave normal angle; RADIATION BELT ELECTRONS; WHISTLER-MODE WAVES; PLASMASPHERIC HISS; STATISTICAL-ANALYSIS; SHEATH IMPEDANCE; ORIGIN; PROPAGATION; GENERATION; SCATTERING; EVOLUTION;
D O I
10.1029/2019GL082111
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In these cases, up to 94% of chorus wave power exists with the conditions required to access the plasmasphere. As such, we conclude that strong azimuthal density gradients are actually a requirement if a significant fraction of chorus wave power is to enter the plasmasphere and be a source of plasmaspheric hiss. This result suggests it is unlikely that chorus directly contributes a significant fraction of plasmaspheric hiss wave power. Plain Language Summary Plasmaspheric hiss waves are typically observed inside a high-density region of geospace known as the plasmasphere. Chorus waves are typically observed at higher altitudes, beyond the plasmasphere region, where the density is substantially lower. Despite the differences between these two wave types, it has been proposed that chorus waves may propagate in such a way that they enter the plasmasphere, where they become a source of plasmaspheric hiss. However, this mechanism can only occur if chorus waves have a specific set of initial conditions. In this study, we find that chorus waves are rarely observed with these required conditions. Only in a spatially limited region close to the edge of plasmaspheric plume structures, where chorus wave power is typically weaker, do we observe a significant fraction of chorus waves that exist with the conditions required to propagate into the plasmasphere. This result qualitatively indicates that chorus waves may not be a substantial source of plasmaspheric hiss.
引用
收藏
页码:2337 / 2346
页数:10
相关论文
共 62 条
[21]   Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss [J].
Hartley, D. P. ;
Kletzing, C. A. ;
De Pascuale, S. ;
Kurth, W. S. ;
Santolik, O. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (08) :6679-6691
[22]   Statistical Properties of Plasmaspheric Hiss From Van Allen Probes Observations [J].
Hartley, D. P. ;
Kletzing, C. A. ;
Santolik, O. ;
Chen, L. ;
Horne, R. B. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (04) :2605-2619
[23]   An improved sheath impedance model for the Van Allen Probes EFW instrument: Effects of the spin axis antenna [J].
Hartley, D. P. ;
Kletzing, C. A. ;
Kurth, W. S. ;
Hospodarsky, G. B. ;
Bounds, S. R. ;
Averkamp, T. F. ;
Bonnell, J. W. ;
Santolk, O. ;
Wygant, J. R. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (04) :4420-4429
[24]   Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument [J].
Hartley, D. P. ;
Kletzing, C. A. ;
Kurth, W. S. ;
Bounds, S. R. ;
Averkamp, T. F. ;
Hospodarsky, G. B. ;
Wygant, J. R. ;
Bonnell, J. W. ;
Santolik, O. ;
Watt, C. E. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (05) :4590-4606
[25]   Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes [J].
Hartley, D. P. ;
Chen, Y. ;
Kletzing, C. A. ;
Denton, M. H. ;
Kurth, W. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (02) :1144-1152
[27]   PLASMAPAUSE AS A VLF WAVE GUIDE [J].
INAN, US ;
BELL, TF .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1977, 82 (19) :2819-2827
[28]   Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events [J].
Jordanova, V. K. ;
Miyoshi, Y. S. ;
Zaharia, S. ;
Thomsen, M. F. ;
Reeves, G. D. ;
Evans, D. S. ;
Mouikis, C. G. ;
Fennell, J. F. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A11)
[29]   EFFECTS OF IONS ON WHISTLER-MODE RAY TRACING [J].
KIMURA, I .
RADIO SCIENCE, 1966, 1 (03) :269-+
[30]   The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP [J].
Kletzing, C. A. ;
Kurth, W. S. ;
Acuna, M. ;
MacDowall, R. J. ;
Torbert, R. B. ;
Averkamp, T. ;
Bodet, D. ;
Bounds, S. R. ;
Chutter, M. ;
Connerney, J. ;
Crawford, D. ;
Dolan, J. S. ;
Dvorsky, R. ;
Hospodarsky, G. B. ;
Howard, J. ;
Jordanova, V. ;
Johnson, R. A. ;
Kirchner, D. L. ;
Mokrzycki, B. ;
Needell, G. ;
Odom, J. ;
Mark, D. ;
Pfaff, R., Jr. ;
Phillips, J. R. ;
Piker, C. W. ;
Remington, S. L. ;
Rowland, D. ;
Santolik, O. ;
Schnurr, R. ;
Sheppard, D. ;
Smith, C. W. ;
Thorne, R. M. ;
Tyler, J. .
SPACE SCIENCE REVIEWS, 2013, 179 (1-4) :127-181