Hermite-Hadamard Type Inequalities for F-Convex Function Involving Fractional Integrals

被引:7
作者
Budaka, Huseyin [1 ]
Sarikaya, Mehmet Zeki [1 ]
Yildiz, Mustafa Kemal [2 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] Afyon Kocatepe Univ, Fac Sci & Arts, Dept Math, Afyon, Turkey
关键词
Hermite-Hadamard inequality; F-convex; fractional integral; DIFFERENTIABLE MAPPINGS;
D O I
10.2298/FIL1816509B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we firstly give some properties the family F and F-convex function which are defined by B. Samet. Then, we establish Hermite-Hadamard type inequalities involving fractional integrals via F-convex function. Some previous results are also recaptured as special cases
引用
收藏
页码:5509 / 5518
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1993, INTRO FRACTIONAL CAL
[3]  
Defnetti B., 1949, ANN MAT PUR APPL, V30, P173, DOI DOI 10.1007/BF02415006
[4]  
Dragomir S. S., 2000, RGMIA Monographs
[5]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[6]  
Gorenflo R., 1997, Fractional calculus: integral and differential equations of fractional order, DOI DOI 10.1007/978-3-7091-2664-6_5
[7]  
Hudzik H., 1994, Aequationes Math., V48, P100, DOI DOI 10.1007/BF01837981
[8]   APPROXIMATELY CONVEX FUNCTIONS [J].
HYERS, DH ;
ULAM, SM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (05) :821-828
[9]  
Jleli M, 2017, AEQUATIONES MATH, V91, P479, DOI 10.1007/s00010-017-0470-2
[10]   On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function [J].
Jleli, Mohamed ;
Samet, Bessem .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03) :1252-1260