Characterizing Strong Stability Preserving Additive Runge-Kutta Methods

被引:19
作者
Higueras, Inmaculada [1 ]
机构
[1] Univ Publ Navarra, Dept Ingn Matemat & Informat, Navarra 31006, Spain
关键词
Runge-Kutta; Additive Runge-Kutta; Strong stability preserving; SSP; Absolutely monotonic; Radius of absolute monotonicity; Nonnegative coefficients; TIME DISCRETIZATION METHODS; SCHEMES; EQUATIONS; SYSTEMS;
D O I
10.1007/s10915-008-9252-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Space discretization of some time dependent partial differential equations give rise to ordinary differential equations containing additive terms with different stiffness properties. In these situations, additive Runge-Kutta (additive RK) methods are used. For additive RK methods the curve of absolute monotonicity gives stepsize restrictions for monotonicity. Necessary conditions for nontrivial curves of absolute monotonicity are the nonnegativity of the additive RK coefficients and some inequalities on some incidence matrices. In this paper we characterize strong stability preserving additive Runge-Kutta methods giving some order barriers and structural properties.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 29 条
[1]  
[Anonymous], 1976, Nonlinear Operators and Differential Equations in Banach Spaces
[2]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[3]   Multirate timestepping methods for hyperbolic conservation laws [J].
Constantinescu, Emil M. ;
Sandu, Adrian .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (03) :239-278
[4]  
Dekker K., 1984, Stability of Runge-Kutta methods for stiff nonlinear differential equations
[5]   Strong stability of singly-diagonally-implicit Runge-Kutta methods [J].
Ferracina, L. ;
Spijker, M. N. .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (11) :1675-1686
[6]   Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods [J].
Ferracina, L ;
Spijker, MN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) :1073-1093
[7]  
Gerisch A, 2001, NUMER METH PART D E, V17, P152, DOI 10.1002/1098-2426(200103)17:2<152::AID-NUM5>3.0.CO
[8]  
2-A
[9]   Total variation diminishing Runge-Kutta schemes [J].
Gottlieb, S ;
Shu, CW .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :73-85
[10]   On high order strong stability preserving Runge-Kutta and multi step time discretizations [J].
Gottlieb, S .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) :105-128