Collaborative pseudo-relevance feedback

被引:12
|
作者
Zhou, Dong [1 ,2 ]
Truran, Mark [3 ]
Liu, Jianxun [1 ,2 ]
Zhang, Sanrong [1 ,2 ]
机构
[1] Hunan Univ Sci & Technol, Key Lab Knowledge Proc & Networked Mfg, Coll Hunan Prov, Xiangtan 411201, Hunan, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Hunan, Peoples R China
[3] Univ Teesside, Sch Comp, Middlesbrough, Cleveland, England
基金
中国国家自然科学基金;
关键词
Pseudo-relevance feedback; Information retrieval; Collaborative filtering; Adaptive tuning; QUERY EXPANSION; MODELS;
D O I
10.1016/j.eswa.2013.06.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pseudo-relevance feedback (PRF) is a technique commonly used in the field of information retrieval. The performance of PRF is heavily dependent upon parameter values. When relevance judgements are unavailable, these parameters are difficult to set. In the following paper, we introduce a novel approach to PRF inspired by collaborative filtering (CF). We also describe an adaptive tuning method which automatically sets algorithmic parameters. In a multi-stage evaluation using publicly available datasets, our technique consistently outperforms conventional PRF, regardless of the underlying retrieval model. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6805 / 6812
页数:8
相关论文
共 50 条
  • [1] Positional Relevance Model for Pseudo-Relevance Feedback
    Lv, Yuanhua
    Zhai, ChengXiang
    SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, 2010, : 579 - 586
  • [2] Multimedia search with pseudo-relevance feedback
    Yan, R
    Hauptmann, A
    Jin, R
    IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2003, 2728 : 238 - 247
  • [3] Pseudo-relevance feedback for multimedia retrieval
    Yan, R
    Hauptmann, AG
    Jin, R
    VIDEO MINING, 2003, 6 : 309 - 338
  • [4] Pseudo-Relevance Feedback Based on Matrix Factorization
    Zamani, Hamed
    Dadashkarimi, Javid
    Shakery, Azadeh
    Croft, W. Bruce
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1483 - 1492
  • [5] Hybrid pseudo-relevance feedback for microblog retrieval
    Chen, Lin
    Chun, Lin
    Ziyu, Lin
    Quan, Zou
    JOURNAL OF INFORMATION SCIENCE, 2013, 39 (06) : 773 - 788
  • [6] Term Proximity Constraints for Pseudo-Relevance Feedback
    Montazeralghaem, Ali
    Zamani, Hamed
    Shakery, Azadeh
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 1085 - 1088
  • [7] Pseudo-relevance feedback query based on Wikipedia
    He, Tingting
    Dai, Xionglu
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 154 - 159
  • [8] Exploring Term Temporality for Pseudo-Relevance Feedback
    Whiting, Stewart
    Moshfeghi, Yashar
    Jose, Joemon M.
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 1245 - 1246
  • [9] A Boosting Approach to Improving Pseudo-Relevance Feedback
    Lv, Yuanhua
    Zhai, ChengXiang
    Chen, Wan
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 165 - 174
  • [10] Investigating the Suboptimality and Instability of Pseudo-Relevance Feedback
    Udupa, Raghavendra
    Bhole, Abhijit
    SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, 2010, : 813 - 814