Existence of global stochastic flow and attractors for Navier-Stokes equations

被引:24
作者
Capinski, M
Cutland, NJ
机构
[1] NLU, Nowy Sacz Grad Sch Business, Dept Finance, PL-33300 Nowy Sacz, Poland
[2] Univ Hull, Dept Math, Hull HU6 7RX, N Humberside, England
关键词
stochastic Navier-Stokes equations; stochastic flow; stochastic attractors;
D O I
10.1007/s004400050238
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For 2-D stochastic Navier-Stokes equations on the torus with multiplicative noise we construct a perfect cocycle and show the existence of global random compact attractors. The equations considered do not admit a pathwise method of solution.
引用
收藏
页码:121 / 151
页数:31
相关论文
共 16 条
[1]  
Albeverio S., 1986, NONSTANDARD METHODS
[2]  
[Anonymous], 1988, NONSTANDARD ANAL ITS
[3]  
ARKERYD LO, 1997, NATO ASI SERIES C, V493
[4]   PERFECT COCYCLES THROUGH STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
ARNOLD, L ;
SCHEUTZOW, M .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (01) :65-88
[5]   PATHWISE GLOBAL ATTRACTORS FOR STATIONARY RANDOM DYNAMIC-SYSTEMS [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (01) :87-102
[6]   STOCHASTIC NAVIER-STOKES EQUATIONS WITH MULTIPLICATIVE NOISE [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1992, 10 (05) :523-532
[7]  
BRZEZNIAK Z, 1991, MATH MOD METH APPL S, V1, P41, DOI DOI 10.1142/S0218202591000046
[8]   Attractors for three-dimensional Navier-Stokes equations [J].
Capinski, M ;
Cutland, NJ .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1966) :2413-2426
[9]   NAVIER-STOKES EQUATIONS WITH MULTIPLICATIVE NOISE [J].
CAPINSKI, M ;
CUTLAND, NJ .
NONLINEARITY, 1993, 6 (01) :71-78
[10]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
CAPINSKI, M ;
CUTLAND, N .
ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) :59-85