The characterization of operators preserving primitivity for matrix k-tuples

被引:11
作者
Beasley, LeRoy B. [1 ]
Guterman, Alexander E. [2 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Moscow MV Lomonosov State Univ, Dept Algebra, Fac Math & Mech, Moscow 119991, Russia
关键词
Primitive matrix tuples; Preservers; Semirings; EXPONENTS; PAIRS;
D O I
10.1016/j.laa.2008.06.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a complete characterization of surjective additive operators acting on the Cartesian product of several matrix spaces over an antinegative semiring without zero divisors, which map primitive matrix k-tuples to primitive matrix k-tuples. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1762 / 1777
页数:16
相关论文
共 16 条
[1]  
Beasley L. B., 1992, LINEAR MULTILINEAR A, V31, P267
[2]   A note on k-primitive directed graphs [J].
Beasley, LB ;
Kirkland, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 :67-74
[3]  
BEASLEY LB, 2005, MATH SCI, V131, P5919
[4]  
BEASLEY LB, OPERATORS PRESERVING
[5]  
Beasley LB, 1989, LINEAR MULTILINEAR A, V25, P205, DOI 10.1080/03081088908817942
[6]  
Brualdi R.A., 1991, COMBINATORIAL MATRIX
[7]   Primitivity of positive matrix pairs: Algebraic characterization, graph theoretic description, and 2D systems interpretation [J].
Fornasini, E ;
Valcher, ME .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) :71-88
[8]   A 2-D SYSTEMS-APPROACH TO RIVER POLLUTION MODELING [J].
FORNASINI, E .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1991, 2 (03) :233-265
[9]  
Glazek K., 2002, GUIDE LIT SEMIRINGS
[10]  
GOLAN JS, 2003, THEORY APPL MATH ITS, V556