Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries

被引:13
作者
Medina, P. A. [1 ,2 ]
Zheng, H. [3 ]
Fahlman, B. D. [1 ,2 ]
Annamalai, P. [3 ]
Swartbooi, A. [3 ]
le Roux, L. [3 ]
Mathe, M. K. [3 ]
机构
[1] Cent Michigan Univ, Dept Chem, Mt Pleasant, MI 48858 USA
[2] Cent Michigan Univ, Sci Adv Mat Program, Mt Pleasant, MI 48858 USA
[3] Council Sci & Ind Res CSIR, Mat Sci & Mfg, ZA-0001 Pretoria, South Africa
来源
SPRINGERPLUS | 2015年 / 4卷
基金
美国国家科学基金会;
关键词
LIBs; Li4Ti5O12; Graphene nanoribbons; Anode; Capacity; ELECTROCHEMICAL PROPERTIES; GRAPHENE; INSERTION; GRAPHITE; STORAGE;
D O I
10.1186/s40064-015-1438-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we report the synthesis of a Li4Ti5O12/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 subset of are 206.5, 200.9, 188, 178.1 and 142.3 mAh.g(-1), respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh.g(-1), respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Omega) compared with LTO (108.05 Omega), and higher exchange current density (j = 1.1 x 10(-3) mA cm(-2))-about 20 times than those of the LTO (j = 2.38 x 10(-4) mA cm(-2)).
引用
收藏
页数:7
相关论文
共 50 条
[21]   Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries [J].
Shi, Ying ;
Wen, Lei ;
Li, Feng ;
Cheng, Hui-Ming .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8610-8617
[22]   Research on carbon-coated Li4Ti5O12 material for lithium ion batteries [J].
Kim, Ju Bin ;
Kim, Dong Jin ;
Chung, Kyung Yoon ;
Byun, Dongjin ;
Cho, Byung Won .
PHYSICA SCRIPTA, 2010, T139
[23]   Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries [J].
Shen, Laifa ;
Uchaker, Evan ;
Zhang, Xiaogang ;
Cao, Guozhong .
ADVANCED MATERIALS, 2012, 24 (48) :6502-6506
[24]   Preparation of Li4Ti5O12 Nanorods as Anode Materials for Lithium-Ion Batteries [J].
Li, Y. ;
Pan, G. L. ;
Liu, J. W. ;
Gao, X. P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (07) :A495-A499
[25]   High performance Li4Ti5O12 material as anode for lithium-ion batteries [J].
Wang, Jie ;
Zhao, Hailei ;
Wen, Yeting ;
Xie, Jingying ;
Xia, Qing ;
Zhang, Tianhou ;
Zeng, Zhipeng ;
Du, Xuefei .
ELECTROCHIMICA ACTA, 2013, 113 :679-685
[26]   Monodispersed Li4Ti5O12 with Controlled Morphology as High Power Lithium Ion Battery Anodes [J].
Li, Yunchao ;
Fu, Guoyi ;
Watson, Mark ;
Harrison, Stephen ;
Paranthaman, M. Parans .
CHEMNANOMAT, 2016, 2 (07) :642-646
[27]   Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries [J].
Marinaro, M. ;
Nobili, F. ;
Birrozzi, A. ;
Moorthy, S. K. Eswara ;
Kaiser, U. ;
Tossici, R. ;
Marassi, R. .
ELECTROCHIMICA ACTA, 2013, 109 :207-213
[28]   Spray-drying synthesis and characterization of Li4Ti5O12 anode material for lithium ion batteries [J].
Li, Chunyang ;
Li, Guojun ;
Wen, Sijing ;
Ren, Ruiming .
JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, 2017, 20 (01)
[29]   Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries [J].
Wang, Jiaqing ;
Yang, Zhenzhong ;
Li, Weihan ;
Zhong, Xiongwu ;
Gu, Lin ;
Yu, Yan .
JOURNAL OF POWER SOURCES, 2014, 266 :323-331
[30]   High rate cycling performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries [J].
Liu, Hai-ping ;
Wen, Guang-wu ;
Bi, Si-fu ;
Wang, Chun-yu ;
Hao, Jing-min ;
Gao, Peng .
ELECTROCHIMICA ACTA, 2016, 192 :38-44