Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries

被引:13
作者
Medina, P. A. [1 ,2 ]
Zheng, H. [3 ]
Fahlman, B. D. [1 ,2 ]
Annamalai, P. [3 ]
Swartbooi, A. [3 ]
le Roux, L. [3 ]
Mathe, M. K. [3 ]
机构
[1] Cent Michigan Univ, Dept Chem, Mt Pleasant, MI 48858 USA
[2] Cent Michigan Univ, Sci Adv Mat Program, Mt Pleasant, MI 48858 USA
[3] Council Sci & Ind Res CSIR, Mat Sci & Mfg, ZA-0001 Pretoria, South Africa
基金
美国国家科学基金会;
关键词
LIBs; Li4Ti5O12; Graphene nanoribbons; Anode; Capacity; ELECTROCHEMICAL PROPERTIES; GRAPHENE; INSERTION; GRAPHITE; STORAGE;
D O I
10.1186/s40064-015-1438-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we report the synthesis of a Li4Ti5O12/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 subset of are 206.5, 200.9, 188, 178.1 and 142.3 mAh.g(-1), respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh.g(-1), respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Omega) compared with LTO (108.05 Omega), and higher exchange current density (j = 1.1 x 10(-3) mA cm(-2))-about 20 times than those of the LTO (j = 2.38 x 10(-4) mA cm(-2)).
引用
收藏
页数:7
相关论文
共 27 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Enhanced Electrochemical Lithium Storage by Graphene Nanoribbons [J].
Bhardwaj, Tarun ;
Antic, Aleks ;
Pavan, Barbara ;
Barone, Veronica ;
Fahlman, Bradley D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (36) :12556-12558
[3]   Dually Fixed SnO2 Nanoparticles on Graphene Nanosheets by Polyaniline Coating for Superior Lithium Storage [J].
Dong, Yanfeng ;
Zhao, Zongbin ;
Wang, Zhiyu ;
Liu, Yang ;
Wang, Xuzhen ;
Qiu, Jieshan .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (04) :2444-2451
[4]   Review on recent progress of nanostructured anode materials for Li-ion batteries [J].
Goriparti, Subrahmanyam ;
Miele, Ermanno ;
De Angelis, Francesco ;
Di Fabrizio, Enzo ;
Zaccaria, Remo Proietti ;
Capiglia, Claudio .
JOURNAL OF POWER SOURCES, 2014, 257 :421-443
[5]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[6]   Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery [J].
Hao, YJ ;
Lai, QY ;
Liu, DQ ;
Xu, ZU ;
Ji, XY .
MATERIALS CHEMISTRY AND PHYSICS, 2005, 94 (2-3) :382-387
[7]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[8]   The low-temperature (400 °C) coating of few-layer graphene on porous Li4Ti5O12 via C28H16Br2 pyrolysis for lithium-ion batteries [J].
Jian, Zelang ;
Zhao, Liang ;
Wang, Rui ;
Hu, Yong-Sheng ;
Li, Hong ;
Chen, Wen ;
Chen, Liquan .
RSC ADVANCES, 2012, 2 (05) :1751-1754
[9]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880
[10]   Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries [J].
Jung, Hun-Gi ;
Myung, Seung-Taek ;
Yoon, Chong Seung ;
Son, Seoung-Bum ;
Oh, Kyu Hwan ;
Amine, Khalil ;
Scrosati, Bruno ;
Sun, Yang-Kook .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) :1345-1351