Evolution of a family of expanding cubic black-hole lattices in numerical relativity

被引:38
作者
Bentivegna, Eloisa [1 ]
Korzynski, Mikolaj [2 ]
机构
[1] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Muhlenberg 1, D-14476 Golm, Germany
[2] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
关键词
D O I
10.1088/0264-9381/30/23/235008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the numerical evolution of a family of conformally-flat, infinite, expanding cubic black-hole lattices. We solve for the initial data using an initial-data prescription presented recently, along with a new multigrid solver developed for this purpose. We then apply the standard tools of numerical relativity to calculate the time development of this initial dataset and derive quantities of cosmological relevance, such as the scaling of proper lengths. Similarly to the case of S-3 lattices, we find that the length scaling remains close to the analytical solution for Friedmann-Lemaitre-Robertson-Walker cosmologies throughout our simulations, which span a window of about one order of magnitude in the growth of the scale factor. We highlight, however, a number of important departures from the Friedmann-Lemaitre-Robertson-Walker class.
引用
收藏
页数:18
相关论文
共 8 条
[1]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[3]   Archipelagian cosmology: Dynamics and observables in a universe with discretized matter content [J].
Clifton, Timothy ;
Ferreira, Pedro G. .
PHYSICAL REVIEW D, 2009, 80 (10)
[4]  
Lichnerowicz A., 1944, J MATH PURE APPL, V23, P37
[5]   DYNAMICS OF A LATTICE UNIVERSE BY THE SCHWARZSCHILD-CELL METHOD [J].
LINDQUIST, RW ;
WHEELER, JA .
REVIEWS OF MODERN PHYSICS, 1957, 29 (03) :432-443
[6]   The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics [J].
Loeffler, Frank ;
Faber, Joshua ;
Bentivegna, Eloisa ;
Bode, Tanja ;
Diener, Peter ;
Haas, Roland ;
Hinder, Ian ;
Mundim, Bruno C. ;
Ott, Christian D. ;
Schnetter, Erik ;
Allen, Gabrielle ;
Campanelli, Manuela ;
Laguna, Pablo .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (11)
[7]   Evolutions in 3D numerical relativity using fixed mesh refinement [J].
Schnetter, E ;
Hawley, SH ;
Hawke, I .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (06) :1465-1488
[8]   GRAVITATIONAL DEGREES OF FREEDOM AND INITIAL-VALUE PROBLEM [J].
YORK, JW .
PHYSICAL REVIEW LETTERS, 1971, 26 (26) :1656-&