Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner

被引:71
作者
Fernandez, J
Bode, B
Koromilas, A
Diehl, JA
Krukovets, I
Snider, MD
Hatzoglou, M
机构
[1] Case Western Reserve Univ, Dept Nutr, Sch Med, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Biochem, Sch Med, Cleveland, OH 44106 USA
[3] St Louis Univ, Dept Biol, St Louis, MO 63103 USA
[4] McGill Univ, Jewish Gen Hosp, Dept Microbiol, Montreal, PQ H3T 1E2, Canada
[5] Univ Nebraska, Med Ctr, Eppley Inst Res Canc & Allied Dis, Omaha, NE 68198 USA
关键词
D O I
10.1074/jbc.M110778200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene is known to be regulated by amino acid availability. It is shown here that cat-1 gene expression is also induced by Glc limitation, which causes a 7-fold increase in cat-1 mRNA, a 30-fold induction of Cat-1 protein levels, and a 4-fold stimulation of arginine uptake. Glc limitation is known to induce the unfolded protein response (UPR) by altering protein glycosylation in the endoplasmic reticulum (ER). The studies here demonstrate that synthesis of Cat-1 occurs during the UPR when global protein synthesis is inhibited. The 5'-UTR of the cat-1 mRNA contains an internal ribosomal entry site (IRES) that is activated by amino acid starvation by a mechanism that involves phosphorylation of the translation initiation factor, eukaryotic initiation factor 2alpha, by the GCN2 kinase. It is shown here that translation from the cat-1/IRES is also induced by Glc deprivation in a manner dependent upon phosphorylation of eukaryotic initiation factor 2alpha by the transmembrane ER kinase, PERK. Because PERK is a key constituent of the UPR, it is concluded that induction of cat-1 gene expression is part of the adaptive response of cells to ER stress. These results also demonstrate that regulation of IRES activity in cellular mRNAs is part of the mechanism by which the UPR protects cells from unfolded proteins in the ER.
引用
收藏
页码:11780 / 11787
页数:8
相关论文
共 30 条
[1]   Post-transcriptional regulation of the arginine transporter Cat-1 by amino acid availability [J].
Aulak, KS ;
Mishra, R ;
Zhou, LY ;
Hyatt, SL ;
de Jonge, W ;
Lamers, W ;
Snider, M ;
Hatzoglou, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30424-30432
[2]   Molecular sites of regulation of expression of the rat cationic amino acid transporter gene [J].
Aulak, KS ;
Liu, J ;
Wu, JY ;
Hyatt, SL ;
Puppi, M ;
Henning, SJ ;
Hatzoglou, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (47) :29799-29806
[3]   Transcriptional regulation of the human asparagine synthetase gene by carbohydrate availability [J].
Barbosa-Tessmann, IP ;
Pineda, V ;
Nick, HS ;
Schuster, SM ;
Kilberg, MS .
BIOCHEMICAL JOURNAL, 1999, 339 :151-158
[4]   Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression [J].
Barbosa-Tessmann, IP ;
Chen, C ;
Zhong, C ;
Schuster, SM ;
Nick, HS ;
Kilberg, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (44) :31139-31144
[5]   Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase [J].
Berlanga, JJ ;
Santoyo, J ;
de Haro, C .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 265 (02) :754-762
[6]   PERK mediates cell-cycle exit during the mammalian unfolded protein response [J].
Brewer, JW ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12625-12630
[7]   Amino acids control mammalian gene transcription:: Activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter [J].
Bruhat, A ;
Jousse, C ;
Carraro, V ;
Reimold, AM ;
Ferrara, M ;
Fafournoux, P .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (19) :7192-7204
[8]  
CHOI SY, 1992, J BIOL CHEM, V267, P286
[9]   Amino acid regulation of gene expression [J].
Fafournoux, P ;
Bruhat, A ;
Jousse, C .
BIOCHEMICAL JOURNAL, 2000, 351 (01) :1-12
[10]   Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2α phosphorylation and translation of a small upstream open reading frame [J].
Fernandez, J ;
Yaman, I ;
Merrick, WC ;
Koromilas, A ;
Wek, RC ;
Sood, R ;
Hensold, J ;
Hatzoglou, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (03) :2050-2058