The maximal denumerant of a numerical semigroup

被引:6
作者
Bryant, Lance [1 ]
Hamblin, James [1 ]
机构
[1] Shippensburg Univ, 1871 Old Main Dr, Shippensburg, PA 17257 USA
关键词
Numerical semigroup; Denumerant; Cohen-Macaulay; Gorenstein; Associated graded ring; GRADED RINGS; DELTA SETS; MONOIDS;
D O I
10.1007/s00233-012-9448-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a numerical semigroup S=aOE (c) a (0),a (1),a (2),aEuro broken vertical bar,a (t) > and naS, we consider the factorization n=c (0) a (0)+c (1) a (1)+a <-+c (t) a (t) where c (i) a parts per thousand yen0. Such a factorization is maximal if ac (i) is a maximum over all such factorizations of n. We provide an algorithm for computing the maximum number of maximal factorizations possible for an element in S, which is called the maximal denumerant of S. We also consider various cases that have connections to the Cohen-Macualay and Gorenstein properties of associated graded rings for which this algorithm simplifies.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 23 条
  • [1] Aguiló-Gost F, 2010, ELECTRON J COMB, V17
  • [2] Aguilo-Gost F., 2009, ELECT NOTES DISCRETE, V34, P157, DOI [10.1016/j.endm.2009.07.026, DOI 10.1016/J.ENDM.2009.07.026]
  • [3] Amos J., 2007, INTEGERS, V7, pA50
  • [4] Associated graded rings of one-dimensional analytically irreducible rings
    Barucci, V.
    Froberg, R.
    [J]. JOURNAL OF ALGEBRA, 2006, 304 (01) : 349 - 358
  • [5] Barucci V, 1997, MEM AM MATH SOC, V125, pR9
  • [6] Barucci V., 2006, MULTIPLICATIVE IDEAL, P39
  • [7] Associated graded rings of one-dimensional analytically irreducible rings II
    Barucci, Valentina
    Froberg, Ralf
    [J]. JOURNAL OF ALGEBRA, 2011, 336 (01) : 279 - 285
  • [8] ON DELTA SETS OF NUMERICAL MONOIDS
    Bowles, Craig
    Chapman, Scott T.
    Kaplan, Nathan
    Reiser, Daniel
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (05) : 695 - 718
  • [9] On a problem of partitions
    Brauer, A
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 : 299 - 312
  • [10] BRYANT L, J COMMUT AL IN PRESS