On Deep Learning based algorithms for Detection of Diabetic Retinopathy

被引:10
作者
Thanati, Haneesha [1 ]
Chalakkal, Renoh Johnson [1 ]
Abdulla, Waleed H. [1 ]
机构
[1] Univ Auckland, Auckland, New Zealand
来源
2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC) | 2019年
关键词
Deep learning; Machine learning; Diabetic retinopathy; Convolutional neural networks; Review; NEURAL-NETWORKS;
D O I
10.23919/elinfocom.2019.8706431
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic retinopathy (DR) is one of the leading causes of avertible blindness worldwide. Early detection of the disease can help to save the vision of diabetic patients. Presence of exudates, hemorrhages, and microaneurysms indicate an unhealthy eye image. Deep learning models have triumphed in image recognition, object detection and biomedical signal classification. Convolution neural network based DR detection techniques are fast evolving and can identify complex features and thus can accurately classify even severe cases. The presented paper investigates the recent work done in diabetic retinopathy detection using deep learning and collating the milestones achieved to guide researchers working in this domain to the future trend.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 35 条
[1]   Web-based screening for diabetic retinopathy in a primary care population: The EyeCheck project [J].
Abramoff, MD ;
Suttorp-Schulten, MSA .
TELEMEDICINE JOURNAL AND E-HEALTH, 2005, 11 (06) :668-674
[2]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[3]   Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks [J].
Adem, Kemal .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 114 :289-295
[4]  
[Anonymous], 2018, U AUCKLAND DIABETIC, DOI [DOI 10.17608/K6.AUCKLAND.5985208.V5, 10.17608/k6.auckland.5985208.v5]
[5]  
[Anonymous], TECHNICAL REPORT
[6]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[7]  
Chalakkal R.J., 2017, Proceedings of the 9th International Conference on Signal Processing Systems, P235
[8]  
Chalakkal R. J., 2018, IET IMAGE PROCESSING
[9]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[10]   FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE [J].
Decenciere, Etienne ;
Zhang, Xiwei ;
Cazuguel, Guy ;
Lay, Bruno ;
Cochener, Beatrice ;
Trone, Caroline ;
Gain, Philippe ;
Ordonez-Varela, John-Richard ;
Massin, Pascale ;
Erginay, Ali ;
Charton, Beatrice ;
Klein, Jean-Claude .
IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (03) :231-234