Spectral and stochastic properties of the f-Laplacian, solutions of PDEs at infinity and geometric applications

被引:14
作者
Bessa, G. Pacelli [1 ]
Pigola, Stefano [2 ]
Setti, Alberto [2 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Insubria Como, Sez Matemat DiSAT, I-22100 Como, Italy
关键词
Weighted Laplacians; Feller property; stochastic completeness; essential spectrum; gradient Ricci solitons; MAXIMUM PRINCIPLE; RICCI; COMPLETENESS; MANIFOLDS; GROWTH;
D O I
10.4171/RMI/731
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to suggest a new perspective to study qualitative properties of solutions of semilinear elliptic partial differential equations defined outside a compact set. The relevant tools in this setting come from spectral theory and from a combination of stochastic properties of the differential operators in question. Possible links between spectral and stochastic properties are analyzed in detail.
引用
收藏
页码:579 / 610
页数:32
相关论文
共 28 条
[1]  
AZENCOTT R, 1974, B SOC MATH FR, V102, P193
[2]  
Bär C, 2010, P AM MATH SOC, V138, P2629
[3]   An extension of Barta's Theorem and geometric applications [J].
Bessa, G. Pacelli ;
Montenegro, J. Fabio .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (04) :345-362
[4]   The Spectrum of the Martin-Morales-Nadirashvili Minimal Surfaces Is Discrete [J].
Bessa, G. Pacelli ;
Jorge, Luquesio P. ;
Montenegro, J. Fabio .
JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (01) :63-71
[5]   ON MINIMAL SURFACES SATISFYING THE OMORI-YAU PRINCIPLE [J].
Borbely, Albert .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (01) :33-39
[6]   IMMERSION OF MANIFOLDS WITH UNBOUNDED IMAGE AND A MODIFIED MAXIMUM PRINCIPLE OF YAU [J].
Borbely, Albert .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 78 (02) :285-291
[7]   A RELATION BETWEEN GROWTH AND THE SPECTRUM OF THE LAPLACIAN [J].
BROOKS, R .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (04) :501-508
[8]   ON THE SPECTRUM OF NON-COMPACT MANIFOLDS WITH FINITE VOLUME [J].
BROOKS, R .
MATHEMATISCHE ZEITSCHRIFT, 1984, 187 (03) :425-432
[9]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[10]   Maximum principles and gradient Ricci solitons [J].
Fernandez-Lopez, Manuel ;
Garcia-Rio, Eduardo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) :73-81