Synthesis and Characterization of Covalently Crosslinked pH-Responsive Hyaluronic Acid Nanogels: Effect of Synthesis Parameters

被引:37
作者
Maiz-Fernandez, Sheila [1 ]
Perez-Alvarez, Leyre [1 ,2 ]
Ruiz-Rubio, Leire [1 ,2 ]
Perez Gonzalez, Raul [3 ]
Saez-Martinez, Virginia [3 ]
Ruiz Perez, Jesica [3 ]
Vilas-Vilela, Jose Luis [1 ,2 ]
机构
[1] Univ Basque Country, UPV EHU, Macromol Chem Grp LABQUIMAC, Dept Phys Chem,Fac Sci & Technol, Barrio Sarriena S-N, Leioa 48940, Spain
[2] UPV EHU Sci Pk, Basque Ctr Mat Applicat & Nanostruct, BCMat, Leioa 48940, Spain
[3] I Med S Coop, Parque Tecnol Alava,Albert Einstein 15,Nave 15, Minano 01510, Spain
关键词
hyaluronic acid; nanogels; divinyl sulfone; 1; 4-butanediol diglycidyl ether; poly(ethylene glycol) bis(amine); DIVINYL SULFONE; DRUG-DELIVERY; HYDROGELS; NANOSTRUCTURES; DEGRADATION; MICELLES;
D O I
10.3390/polym11040742
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Stable hyaluronic acid nanogels were obtained following the water-in-oil microemulsion method by covalent crosslinking with three biocompatible crosslinking agents: Divinyl sulfone, 1,4-butanediol diglycidyl ether (BDDE), and poly(ethylene glycol) bis(amine). All nanoparticles showed a pH-sensitive swelling behavior, according to the pKa value of hyaluronic acid, as a consequence of the ionization of the carboxylic moieties, as it was corroborated by zeta potential measurements. QELS studies were carried out to study the influence of the chemical structure of the crosslinking agents on the particle size of the obtained nanogels. In addition, the effect of the molecular weight of the biopolymer and the degree of crosslinking on the nanogels dimensions was also evaluated for BDDE crosslinked nanoparticles, which showed the highest pH-responsive response.
引用
收藏
页数:16
相关论文
共 47 条
[21]  
Hu Z., 2009, Process for Synthesizing Oil and Surfactant-free Hyaluronic Acid Nanoparticles and Microparticles, Patent No. [US7,601,704B2, 7601704]
[22]   Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities [J].
Jeon, Oju ;
Song, Su Jin ;
Lee, Kee-Jung ;
Park, Moon Hyang ;
Lee, Soo-Hong ;
Hahn, Sei Kwang ;
Kim, Sungjee ;
Kim, Byung-Soo .
CARBOHYDRATE POLYMERS, 2007, 70 (03) :251-257
[23]   Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks [J].
Jha, Amit K. ;
Malik, Manisha S. ;
Farach-Carson, Mary C. ;
Duncan, Randall L. ;
Jia, Xinqiao .
SOFT MATTER, 2010, 6 (20) :5045-5055
[24]   Modification and cross-linking parameters in hyaluronic acid hydrogels-Definitions and analytical methods [J].
Kenne, Lennart ;
Gohil, Suresh ;
Nilsson, Eva M. ;
Karlsson, Anders ;
Ericsson, David ;
Kenne, Anne Helander ;
Nord, Lars I. .
CARBOHYDRATE POLYMERS, 2013, 91 (01) :410-418
[25]   Crosslinking method of hyaluronic-based hydrogel for biomedical applications [J].
Khunmanee, Sureerat ;
Jeong, Younghyen ;
Park, Hansoo .
JOURNAL OF TISSUE ENGINEERING, 2017, 8
[26]  
KOBAYASHI Y, 1994, BIORHEOLOGY, V31, P235
[27]   Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier [J].
Kong, Ming ;
Chen, Xi Guang ;
Kweon, Dong Keon ;
Park, Hyun Jin .
CARBOHYDRATE POLYMERS, 2011, 86 (02) :837-843
[29]  
Lipinski C.A., 2016, AM PHARM REV, V5, P1
[30]   Hyaluronic-Acid-Based pH-Sensitive Nanogels for Tumor-Targeted Drug Delivery [J].
Luan, Shujuan ;
Zhu, Yingchun ;
Wu, Xiaohe ;
Wang, Yingying ;
Liang, Fengguang ;
Song, Shiyong .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (10) :2410-2419