Synthesis and Characterization of Covalently Crosslinked pH-Responsive Hyaluronic Acid Nanogels: Effect of Synthesis Parameters

被引:37
作者
Maiz-Fernandez, Sheila [1 ]
Perez-Alvarez, Leyre [1 ,2 ]
Ruiz-Rubio, Leire [1 ,2 ]
Perez Gonzalez, Raul [3 ]
Saez-Martinez, Virginia [3 ]
Ruiz Perez, Jesica [3 ]
Vilas-Vilela, Jose Luis [1 ,2 ]
机构
[1] Univ Basque Country, UPV EHU, Macromol Chem Grp LABQUIMAC, Dept Phys Chem,Fac Sci & Technol, Barrio Sarriena S-N, Leioa 48940, Spain
[2] UPV EHU Sci Pk, Basque Ctr Mat Applicat & Nanostruct, BCMat, Leioa 48940, Spain
[3] I Med S Coop, Parque Tecnol Alava,Albert Einstein 15,Nave 15, Minano 01510, Spain
关键词
hyaluronic acid; nanogels; divinyl sulfone; 1; 4-butanediol diglycidyl ether; poly(ethylene glycol) bis(amine); DIVINYL SULFONE; DRUG-DELIVERY; HYDROGELS; NANOSTRUCTURES; DEGRADATION; MICELLES;
D O I
10.3390/polym11040742
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Stable hyaluronic acid nanogels were obtained following the water-in-oil microemulsion method by covalent crosslinking with three biocompatible crosslinking agents: Divinyl sulfone, 1,4-butanediol diglycidyl ether (BDDE), and poly(ethylene glycol) bis(amine). All nanoparticles showed a pH-sensitive swelling behavior, according to the pKa value of hyaluronic acid, as a consequence of the ionization of the carboxylic moieties, as it was corroborated by zeta potential measurements. QELS studies were carried out to study the influence of the chemical structure of the crosslinking agents on the particle size of the obtained nanogels. In addition, the effect of the molecular weight of the biopolymer and the degree of crosslinking on the nanogels dimensions was also evaluated for BDDE crosslinked nanoparticles, which showed the highest pH-responsive response.
引用
收藏
页数:16
相关论文
共 47 条
[1]  
Aigner J., 1998, J BIOMED MAT RES BAN, V42, P22
[2]   Study of the effect of mixing approach on cross-linking efficiency of hyaluronic acid-based hydrogel cross-linked with 1,4-butanediol diglycidyl ether [J].
Al-Sibani, Mohammed ;
Al-Harrasi, Ahmed ;
Neubert, Reinhard H. H. .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2016, 91 :131-137
[3]  
Allemann IB, 2008, CLIN INTERV AGING, V3, P629
[4]  
Asadian-Birjand M, 2012, CURR MED CHEM, V19, P5029
[5]   Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization [J].
Bencherif, Sidi A. ;
Siegwart, Daniel J. ;
Srinivasan, Abiraman ;
Horkay, Ferenc ;
Hollinger, Jeffrey O. ;
Washburn, Newell R. ;
Matyjaszewski, Krzysztof .
BIOMATERIALS, 2009, 30 (29) :5270-5278
[6]   Synthesis by AGET ATRP of Degradable Nanogel Precursors for In Situ Formation of Nanostructured Hyaluronic Acid Hydrogel [J].
Bencherif, Sidi A. ;
Washburn, Newell R. ;
Matyjaszewski, Krzysztof .
BIOMACROMOLECULES, 2009, 10 (09) :2499-2507
[7]   Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol [J].
Boonme, Prapaporn ;
Krauel, Karen ;
Graf, Anja ;
Rades, Thomas ;
Junyaprasert, Varaporn Buraphacheep .
AAPS PHARMSCITECH, 2006, 7 (02)
[8]  
Bulpitt P, 1999, J BIOMED MATER RES, V47, P152
[9]   Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks [J].
Burdick, JA ;
Chung, C ;
Jia, XQ ;
Randolph, MA ;
Langer, R .
BIOMACROMOLECULES, 2005, 6 (01) :386-391
[10]   Polymer nanogels: A versatile nanoscopic drug delivery platform [J].
Chacko, Reuben T. ;
Ventura, Judy ;
Zhuang, Jiaming ;
Thayumanavan, S. .
ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 (09) :836-851