Conformal Anomaly Detection of Trajectories with a Multi-class Hierarchy

被引:17
作者
Smith, James [1 ]
Nouretdinov, Ilia [1 ]
Craddock, Rachel [2 ]
Offer, Charles [2 ]
Gammerman, Alexander [1 ]
机构
[1] Royal Holloway Univ London, Comp Learning Res Ctr, Egham, Surrey, England
[2] Thales UK, London, England
来源
STATISTICAL LEARNING AND DATA SCIENCES | 2015年 / 9047卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-319-17091-6_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper investigates the problem of anomaly detection in the maritime trajectory surveillance domain. Conformal predictors in this paper are used as a basis for anomaly detection. A multi-class hierarchy framework is presented for different class representations. Experiments are conducted with data taken from shipping vessel trajectories using data obtained through AIS (Automatic Identification System) broadcasts and the results are discussed.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 2010, P 1 INT WORKSH NOV D
[2]   Anomaly Detection: A Survey [J].
Chandola, Varun ;
Banerjee, Arindam ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2009, 41 (03)
[3]  
Gammerman A, 2007, COMPUT J, V50, P151, DOI [10.1093/comjnl/bxl065, 10.1093/comjnl/bx1065]
[4]  
Hawkins Douglas M., 1980, IDENTIFICATION OUTLI, V11
[5]  
Laxhammar R., 2014, THESIS U SKOVDE
[6]  
Laxhammar R., 2011, 2011 P 14 INT C INF
[7]  
Laxhammar Rikard, 2012, 8 INT C ART INT AP 4, P192, DOI DOI 10.1007/978-3-642-33412-2_20
[8]  
Smith J., 2014, Artificial Intelligence Applications and Innovations, P271
[9]  
Vovk V., 2005, ALGORITHMIC LEARNING, DOI DOI 10.1007/B106715