Discrete-time Adaptive ILC for Non-parametric Uncertain Nonlinear Systems with Iteration-Varying Trajectory and Random Initial Condition

被引:13
作者
Chi, R. H. [1 ]
Hou, Z. S. [2 ]
Jin, S. T. [2 ]
Wang, D. W. [3 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Automat & Elect Engn, Qingdao 266042, Peoples R China
[2] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Adv Control Syst Lab, Beijing 100044, Peoples R China
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr E City, EXQUISITUS, Singapore 639798, Singapore
基金
美国国家科学基金会;
关键词
Adaptive iterative learning control; non-parametric uncertainties; nonlinear discrete-time system; random initial condition; iteration-varying target trajectories; LEARNING CONTROL; BATCH PROCESSES;
D O I
10.1002/asjc.569
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new discrete-time adaptive iterative learning control approach (AILC) for a class of time-varying nonlinear systems with nonparametric uncertainties and non-repeatable external disturbances by incorporating a novel iterative estimate scheme. A major distinct feature of the presented approach is that uncertainties can be completely compensated for, using only I/O data. Another distinct feature is that the pointwise convergence is achieved over a finite time interval without requiring the matching condition on initial states and reference trajectory. Rigorous mathematical analysis is developed, and simulation results illustrate the effectiveness of the proposed approach.
引用
收藏
页码:562 / 570
页数:9
相关论文
共 24 条
[1]   BETTERING OPERATION OF ROBOTS BY LEARNING [J].
ARIMOTO, S ;
KAWAMURA, S ;
MIYAZAKI, F .
JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02) :123-140
[2]  
Chan Ho Ham, 2000, International Journal of Robotics & Automation, V15, P119
[3]   New discrete-time adaptive ILC for nonlinear systems with time-varying parametric uncertainties [J].
Institute of Autonomous Navigation and Intelligent Control, School of Automation and Electrical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China ;
不详 .
Zidonghua Xuebao, 2008, 7 (805-808) :805-808
[4]   Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition [J].
Chi, Ronghu ;
Hou, Zhongsheng ;
Xu, Jianxin .
AUTOMATICA, 2008, 44 (08) :2207-2213
[5]  
Chiang-Ju Chien, 2002, Asian Journal of Control, V4, P21, DOI 10.1111/j.1934-6093.2002.tb00329.x
[6]   Adaptive iterative learning control of uncertain robotic systems [J].
Choi, JY ;
Lee, JS .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2000, 147 (02) :217-223
[7]   Non-linear iterative learning by an adaptive Lyapunov technique [J].
French, M ;
Rogers, E .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (10) :840-850
[8]   On-off iterative adaptive controller for low-power micro-robotic step regulation [J].
Hahn, Bongsu ;
Oldham, Kenn .
ASIAN JOURNAL OF CONTROL, 2012, 14 (03) :624-640
[9]   Freeway traffic control using iterative learning control-based ramp metering and speed signaling [J].
Hou, Zhongsheng ;
Xu, Jian-Xin ;
Zhong, Hongwei .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2007, 56 (02) :466-477
[10]   AN ITERATIVE LEARNING CONTROL OF ROBOT MANIPULATORS [J].
KUC, TY ;
NAM, KH ;
LEE, JS .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1991, 7 (06) :835-842